亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sarcasm recognition is challenging because it needs an understanding of the true intention, which is opposite to or different from the literal meaning of the words. Prior work has addressed this challenge by developing a series of methods that provide richer $contexts$, e.g., sentiment or cultural nuances, to models. While shown to be effective individually, no study has systematically evaluated their collective effectiveness. As a result, it remains unclear to what extent additional contexts can improve sarcasm recognition. In this work, we explore the improvements that existing methods bring by incorporating more contexts into a model. To this end, we develop a framework where we can integrate multiple contextual cues and test different approaches. In evaluation with four approaches on three sarcasm recognition benchmarks, we achieve existing state-of-the-art performances and also demonstrate the benefits of sequentially adding more contexts. We also identify inherent drawbacks of using more contexts, highlighting that in the pursuit of even better results, the model may need to adopt societal biases.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · · MoDELS · 可辨認的 · state-of-the-art ·
2024 年 4 月 30 日

Query expansion has been widely used to improve the search results of first-stage retrievers, yet its influence on second-stage, cross-encoder rankers remains under-explored. A recent work of Weller et al. [44] shows that current expansion techniques benefit weaker models such as DPR and BM25 but harm stronger rankers such as MonoT5. In this paper, we re-examine this conclusion and raise the following question: Can query expansion improve generalization of strong cross-encoder rankers? To answer this question, we first apply popular query expansion methods to state-of-the-art cross-encoder rankers and verify the deteriorated zero-shot performance. We identify two vital steps for cross-encoders in the experiment: high-quality keyword generation and minimal-disruptive query modification. We show that it is possible to improve the generalization of a strong neural ranker, by prompt engineering and aggregating the ranking results of each expanded query via fusion. Specifically, we first call an instruction-following language model to generate keywords through a reasoning chain. Leveraging self-consistency and reciprocal rank weighting, we further combine the ranking results of each expanded query dynamically. Experiments on BEIR and TREC Deep Learning 2019/2020 show that the nDCG@10 scores of both MonoT5 and RankT5 following these steps are improved, which points out a direction for applying query expansion to strong cross-encoder rankers.

The purpose of instruction tuning is enabling zero-shot performance, but instruction tuning has also been shown to improve chain-of-thought reasoning and value alignment (Si et al., 2023). Here we consider the impact on $\textit{consistency}$, i.e., the sensitivity of language models to small perturbations in the input. We compare 10 instruction-tuned LLaMA models to the original LLaMA-7b model and show that almost across-the-board they become more consistent, both in terms of their representations and their predictions in zero-shot and downstream tasks. We explain these improvements through mechanistic analyses of factual recall.

Survival prediction is a complex ordinal regression task that aims to predict the survival coefficient ranking among a cohort of patients, typically achieved by analyzing patients' whole slide images. Existing deep learning approaches mainly adopt multiple instance learning or graph neural networks under weak supervision. Most of them are unable to uncover the diverse interactions between different types of biological entities(\textit{e.g.}, cell cluster and tissue block) across multiple scales, while such interactions are crucial for patient survival prediction. In light of this, we propose a novel multi-scale heterogeneity-aware hypergraph representation framework. Specifically, our framework first constructs a multi-scale heterogeneity-aware hypergraph and assigns each node with its biological entity type. It then mines diverse interactions between nodes on the graph structure to obtain a global representation. Experimental results demonstrate that our method outperforms state-of-the-art approaches on three benchmark datasets. Code is publicly available at \href{//github.com/Hanminghao/H2GT}{//github.com/Hanminghao/H2GT}.

This study investigates the factors influencing the performance of multilingual large language models (MLLMs) across diverse languages. We study 6 MLLMs, including masked language models, autoregressive models, and instruction-tuned LLMs, on the SIB-200 dataset, a topic classification dataset encompassing 204 languages. Our analysis considers three scenarios: ALL languages, SEEN languages (present in the model's pretraining data), and UNSEEN languages (not present or documented in the model's pretraining data in any meaningful way). We examine the impact of factors such as pretraining data size, general resource availability, language family, and script type on model performance. Decision tree analysis reveals that pretraining data size is the most influential factor for SEEN languages. However, interestingly, script type and language family are crucial for UNSEEN languages, highlighting the importance of cross-lingual transfer learning. Notably, model size and architecture do not significantly alter the most important features identified. Our findings provide valuable insights into the strengths and limitations of current MLLMs and hope to guide the development of more effective and equitable multilingual NLP systems.

One well motivated explanation method for classifiers leverages counterfactuals which are hypothetical events identical to real observations in all aspects except for one categorical feature. Constructing such counterfactual poses specific challenges for texts, however, as some attribute values may not necessarily align with plausible real-world events. In this paper we propose a simple method for generating counterfactuals by intervening in the space of text representations which bypasses this limitation. We argue that our interventions are minimally disruptive and that they are theoretically sound as they align with counterfactuals as defined in Pearl's causal inference framework. To validate our method, we conducted experiments first on a synthetic dataset and then on a realistic dataset of counterfactuals. This allows for a direct comparison between classifier predictions based on ground truth counterfactuals - obtained through explicit text interventions - and our counterfactuals, derived through interventions in the representation space. Eventually, we study a real world scenario where our counterfactuals can be leveraged both for explaining a classifier and for bias mitigation.

Speech emotion recognition (SER) is constantly gaining attention in recent years due to its potential applications in diverse fields and thanks to the possibility offered by deep learning technologies. However, recent studies have shown that deep learning models can be vulnerable to adversarial attacks. In this paper, we systematically assess this problem by examining the impact of various adversarial white-box and black-box attacks on different languages and genders within the context of SER. We first propose a suitable methodology for audio data processing, feature extraction, and CNN-LSTM architecture. The observed outcomes highlighted the significant vulnerability of CNN-LSTM models to adversarial examples (AEs). In fact, all the considered adversarial attacks are able to significantly reduce the performance of the constructed models. Furthermore, when assessing the efficacy of the attacks, minor differences were noted between the languages analyzed as well as between male and female speech. In summary, this work contributes to the understanding of the robustness of CNN-LSTM models, particularly in SER scenarios, and the impact of AEs. Interestingly, our findings serve as a baseline for a) developing more robust algorithms for SER, b) designing more effective attacks, c) investigating possible defenses, d) improved understanding of the vocal differences between different languages and genders, and e) overall, enhancing our comprehension of the SER task.

Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.

Feature attribution methods are popular in interpretable machine learning. These methods compute the attribution of each input feature to represent its importance, but there is no consensus on the definition of "attribution", leading to many competing methods with little systematic evaluation, complicated in particular by the lack of ground truth attribution. To address this, we propose a dataset modification procedure to induce such ground truth. Using this procedure, we evaluate three common methods: saliency maps, rationales, and attentions. We identify several deficiencies and add new perspectives to the growing body of evidence questioning the correctness and reliability of these methods applied on datasets in the wild. We further discuss possible avenues for remedy and recommend new attribution methods to be tested against ground truth before deployment. The code is available at \url{//github.com/YilunZhou/feature-attribution-evaluation}.

Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.

Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.

北京阿比特科技有限公司