亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose PRISM to enable users of machine translation systems to preserve the privacy of data on their own initiative. There is a growing demand to apply machine translation systems to data that require privacy protection. While several machine translation engines claim to prioritize privacy, the extent and specifics of such protection are largely ambiguous. First, there is often a lack of clarity on how and to what degree the data is protected. Even if service providers believe they have sufficient safeguards in place, sophisticated adversaries might still extract sensitive information. Second, vulnerabilities may exist outside of these protective measures, such as within communication channels, potentially leading to data leakage. As a result, users are hesitant to utilize machine translation engines for data demanding high levels of privacy protection, thereby missing out on their benefits. PRISM resolves this problem. Instead of relying on the translation service to keep data safe, PRISM provides the means to protect data on the user's side. This approach ensures that even machine translation engines with inadequate privacy measures can be used securely. For platforms already equipped with privacy safeguards, PRISM acts as an additional protection layer, reinforcing their security furthermore. PRISM adds these privacy features without significantly compromising translation accuracy. Our experiments demonstrate the effectiveness of PRISM using real-world translators, T5 and ChatGPT (GPT-3.5-turbo), and the datasets with two languages. PRISM effectively balances privacy protection with translation accuracy.

相關內容

機(ji)器翻譯(Machine Translation)涵蓋(gai)(gai)計算語(yu)(yu)(yu)言(yan)學和語(yu)(yu)(yu)言(yan)工程的所有分支,包含多語(yu)(yu)(yu)言(yan)方(fang)面。特色論(lun)文涵蓋(gai)(gai)理論(lun),描述或計算方(fang)面的任何下(xia)列主題:雙語(yu)(yu)(yu)和多語(yu)(yu)(yu)語(yu)(yu)(yu)料庫的編寫和使(shi)用,計算機(ji)輔(fu)助語(yu)(yu)(yu)言(yan)教學,非羅馬(ma)字(zi)符集(ji)的計算含義,連接(jie)主義翻譯方(fang)法,對(dui)比(bi)語(yu)(yu)(yu)言(yan)學等(deng)。 官網地址:

Unsupervised domain adaptation (UDA) aims to transfer knowledge from a labeled source domain to an unlabeled target domain. In this paper, we introduce a novel approach called class-aware optimal transport (OT), which measures the OT distance between a distribution over the source class-conditional distributions and a mixture of source and target data distribution. Our class-aware OT leverages a cost function that determines the matching extent between a given data example and a source class-conditional distribution. By optimizing this cost function, we find the optimal matching between target examples and source class-conditional distributions, effectively addressing the data and label shifts that occur between the two domains. To handle the class-aware OT efficiently, we propose an amortization solution that employs deep neural networks to formulate the transportation probabilities and the cost function. Additionally, we propose minimizing class-aware Higher-order Moment Matching (HMM) to align the corresponding class regions on the source and target domains. The class-aware HMM component offers an economical computational approach for accurately evaluating the HMM distance between the two distributions. Extensive experiments on benchmark datasets demonstrate that our proposed method significantly outperforms existing state-of-the-art baselines.

Many machine learning applications require operating on a spatially distributed dataset. Despite technological advances, privacy considerations and communication constraints may prevent gathering the entire dataset in a central unit. In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers, which is commonly used in the optimization literature due to its fast convergence. In contrast to distributed optimization, distributed sampling allows for uncertainty quantification in Bayesian inference tasks. We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art. For our theoretical results, we use convex optimization tools to establish a fundamental inequality on the generated local sample iterates. This inequality enables us to show convergence of the distribution associated with these iterates to the underlying target distribution in Wasserstein distance. In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.

We present a technique for controlling physically simulated characters using user inputs from an off-the-shelf depth camera. Our controller takes a real-time stream of user poses as input, and simulates a stream of target poses of a biped based on it. The simulated biped mimics the user's actions while moving forward at a modest speed and maintaining balance. The controller is parameterized over a set of modulated reference motions that aims to cover the range of possible user actions. For real-time simulation, the best set of control parameters for the current input pose is chosen from the parameterized sets of pre-computed control parameters via a regression method. By applying the chosen parameters at each moment, the simulated biped can imitate a range of user actions while walking in various interactive scenarios.

Simulating user interactions enables a more user-oriented evaluation of information retrieval (IR) systems. While user simulations are cost-efficient and reproducible, many approaches often lack fidelity regarding real user behavior. Most notably, current user models neglect the user's context, which is the primary driver of perceived relevance and the interactions with the search results. To this end, this work introduces the simulation of context-driven query reformulations. The proposed query generation methods build upon recent Large Language Model (LLM) approaches and consider the user's context throughout the simulation of a search session. Compared to simple context-free query generation approaches, these methods show better effectiveness and allow the simulation of more efficient IR sessions. Similarly, our evaluations consider more interaction context than current session-based measures and reveal interesting complementary insights in addition to the established evaluation protocols. We conclude with directions for future work and provide an entirely open experimental setup.

The ever-increasing demand for data services and the proliferation of user equipment (UE) have resulted in a significant rise in the volume of mobile traffic. Moreover, in multi-band networks, non-uniform traffic distribution among different operational bands can lead to congestion, which can adversely impact the user's quality of experience. Load balancing is a critical aspect of network optimization, where it ensures that the traffic is evenly distributed among different bands, avoiding congestion and ensuring better user experience. Traditional load balancing approaches rely only on the band channel quality as a load indicator and to move UEs between bands, which disregards the UE's demands and the band resource, and hence, leading to a suboptimal balancing and utilization of resources. To address this challenge, we propose an event-based algorithm, in which we model the load balancing problem as a multi-objective stochastic optimization, and assign UEs to bands in a probabilistic manner. The goal is to evenly distribute traffic across available bands according to their resources, while maintaining minimal number of inter-frequency handovers to avoid the signaling overhead and the interruption time. Simulation results show that the proposed algorithm enhances the network's performance and outperforms traditional load balancing approaches in terms of throughput and interruption time.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Recommender systems play a fundamental role in web applications in filtering massive information and matching user interests. While many efforts have been devoted to developing more effective models in various scenarios, the exploration on the explainability of recommender systems is running behind. Explanations could help improve user experience and discover system defects. In this paper, after formally introducing the elements that are related to model explainability, we propose a novel explainable recommendation model through improving the transparency of the representation learning process. Specifically, to overcome the representation entangling problem in traditional models, we revise traditional graph convolution to discriminate information from different layers. Also, each representation vector is factorized into several segments, where each segment relates to one semantic aspect in data. Different from previous work, in our model, factor discovery and representation learning are simultaneously conducted, and we are able to handle extra attribute information and knowledge. In this way, the proposed model can learn interpretable and meaningful representations for users and items. Unlike traditional methods that need to make a trade-off between explainability and effectiveness, the performance of our proposed explainable model is not negatively affected after considering explainability. Finally, comprehensive experiments are conducted to validate the performance of our model as well as explanation faithfulness.

Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations. Although several efforts have been made for CRS, two major issues still remain to be solved. First, the conversation data itself lacks of sufficient contextual information for accurately understanding users' preference. Second, there is a semantic gap between natural language expression and item-level user preference. To address these issues, we incorporate both word-oriented and entity-oriented knowledge graphs (KG) to enhance the data representations in CRSs, and adopt Mutual Information Maximization to align the word-level and entity-level semantic spaces. Based on the aligned semantic representations, we further develop a KG-enhanced recommender component for making accurate recommendations, and a KG-enhanced dialog component that can generate informative keywords or entities in the response text. Extensive experiments have demonstrated the effectiveness of our approach in yielding better performance on both recommendation and conversation tasks.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司