Recent studies have revealed that using social robots can accelerate the learning process of several skills in areas where autistic children typically show deficits. However, most early research studies conducted interactions via free play. More recent research has demonstrated that robot-mediated autism therapies focusing on core impairments of autism spectrum disorder (e.g., joint attention) yield better results than unstructured interactions. This paper aims to systematically review the most relevant findings concerning the application of social robotics to joint attention tasks, a cardinal feature of autism spectrum disorder that significantly influences the neurodevelopmental trajectory of autistic children. Initially, we define autism spectrum disorder and explore its societal implications. Following this, we examine the need for technological aid and the potentialities of robot-assisted autism therapy. We then define joint attention and highlight its crucial role in children's social and cognitive development. Subsequently, we analyze the importance of structured interactions and the role of selecting the optimal robot for specific tasks. This is followed by a comparative analysis of the works reviewed earlier, presenting an in-depth examination of two distinct formal models employed to design the prompts and reward system that enables the robot to adapt to children's responses. These models are critically compared to highlight their strengths and limitations. Next, we introduce a novel algorithm to address the identified limitations, integrating interactive environmental factors and a more sophisticated prompting and reward system. Finally, we propose further research directions, discuss the most relevant open questions, and draw conclusions regarding the effectiveness of social robotics in the medical treatment of autism spectrum disorders.
Recent vision-language foundation models, such as CLIP, have demonstrated superior capabilities in learning representations that can be transferable across diverse range of downstream tasks and domains. With the emergence of such powerful models, it has become crucial to effectively leverage their capabilities in tackling challenging vision tasks. On the other hand, only a few works have focused on devising adversarial examples that transfer well to both unknown domains and model architectures. In this paper, we propose a novel transfer attack method called PDCL-Attack, which leverages the CLIP model to enhance the transferability of adversarial perturbations generated by a generative model-based attack framework. Specifically, we formulate an effective prompt-driven feature guidance by harnessing the semantic representation power of text, particularly from the ground-truth class labels of input images. To the best of our knowledge, we are the first to introduce prompt learning to enhance the transferable generative attacks. Extensive experiments conducted across various cross-domain and cross-model settings empirically validate our approach, demonstrating its superiority over state-of-the-art methods.
High utility and rigorous data privacy are of the main goals of a federated learning (FL) system, which learns a model from the data distributed among some clients. The latter has been tried to achieve by using differential privacy in FL (DPFL). There is often heterogeneity in clients privacy requirements, and existing DPFL works either assume uniform privacy requirements for clients or are not applicable when server is not fully trusted (our setting). Furthermore, there is often heterogeneity in batch and/or dataset size of clients, which as shown, results in extra variation in the DP noise level across clients model updates. With these sources of heterogeneity, straightforward aggregation strategies, e.g., assigning clients aggregation weights proportional to their privacy parameters will lead to lower utility. We propose Robust-HDP, which efficiently estimates the true noise level in clients model updates and reduces the noise-level in the aggregated model updates considerably. Robust-HDP improves utility and convergence speed, while being safe to the clients that may maliciously send falsified privacy parameter to server. Extensive experimental results on multiple datasets and our theoretical analysis confirm the effectiveness of Robust-HDP. Our code can be found here.
Deep learning, especially convolutional neural networks (CNNs) and Transformer architectures, have become the focus of extensive research in medical image segmentation, achieving impressive results. However, CNNs come with inductive biases that limit their effectiveness in more complex, varied segmentation scenarios. Conversely, while Transformer-based methods excel at capturing global and long-range semantic details, they suffer from high computational demands. In this study, we propose CSWin-UNet, a novel U-shaped segmentation method that incorporates the CSWin self-attention mechanism into the UNet to facilitate horizontal and vertical stripes self-attention. This method significantly enhances both computational efficiency and receptive field interactions. Additionally, our innovative decoder utilizes a content-aware reassembly operator that strategically reassembles features, guided by predicted kernels, for precise image resolution restoration. Our extensive empirical evaluations on diverse datasets, including synapse multi-organ CT, cardiac MRI, and skin lesions, demonstrate that CSWin-UNet maintains low model complexity while delivering high segmentation accuracy.
This paper investigates multi-objective reinforcement learning (MORL), which focuses on learning Pareto optimal policies in the presence of multiple reward functions. Despite MORL's significant empirical success, there is still a lack of satisfactory understanding of various MORL optimization targets and efficient learning algorithms. Our work offers a systematic analysis of several optimization targets to assess their abilities to find all Pareto optimal policies and controllability over learned policies by the preferences for different objectives. We then identify Tchebycheff scalarization as a favorable scalarization method for MORL. Considering the non-smoothness of Tchebycheff scalarization, we reformulate its minimization problem into a new min-max-max optimization problem. Then, for the stochastic policy class, we propose efficient algorithms using this reformulation to learn Pareto optimal policies. We first propose an online UCB-based algorithm to achieve an $\varepsilon$ learning error with an $\tilde{\mathcal{O}}(\varepsilon^{-2})$ sample complexity for a single given preference. To further reduce the cost of environment exploration under different preferences, we propose a preference-free framework that first explores the environment without pre-defined preferences and then generates solutions for any number of preferences. We prove that it only requires an $\tilde{\mathcal{O}}(\varepsilon^{-2})$ exploration complexity in the exploration phase and demands no additional exploration afterward. Lastly, we analyze the smooth Tchebycheff scalarization, an extension of Tchebycheff scalarization, which is proved to be more advantageous in distinguishing the Pareto optimal policies from other weakly Pareto optimal policies based on entry values of preference vectors. Furthermore, we extend our algorithms and theoretical analysis to accommodate this optimization target.
Parameter-efficient fine-tuning for continual learning (PEFT-CL) has shown promise in adapting pre-trained models to sequential tasks while mitigating catastrophic forgetting problem. However, understanding the mechanisms that dictate continual performance in this paradigm remains elusive. To tackle this complexity, we undertake a rigorous analysis of PEFT-CL dynamics to derive relevant metrics for continual scenarios using Neural Tangent Kernel (NTK) theory. With the aid of NTK as a mathematical analysis tool, we recast the challenge of test-time forgetting into the quantifiable generalization gaps during training, identifying three key factors that influence these gaps and the performance of PEFT-CL: training sample size, task-level feature orthogonality, and regularization. To address these challenges, we introduce NTK-CL, a novel framework that eliminates task-specific parameter storage while adaptively generating task-relevant features. Aligning with theoretical guidance, NTK-CL triples the feature representation of each sample, theoretically and empirically reducing the magnitude of both task-interplay and task-specific generalization gaps. Grounded in NTK analysis, our approach imposes an adaptive exponential moving average mechanism and constraints on task-level feature orthogonality, maintaining intra-task NTK forms while attenuating inter-task NTK forms. Ultimately, by fine-tuning optimizable parameters with appropriate regularization, NTK-CL achieves state-of-the-art performance on established PEFT-CL benchmarks. This work provides a theoretical foundation for understanding and improving PEFT-CL models, offering insights into the interplay between feature representation, task orthogonality, and generalization, contributing to the development of more efficient continual learning systems.
Cross-device federated learning (FL) is a growing machine learning setting whereby multiple edge devices collaborate to train a model without disclosing their raw data. With the great number of mobile devices participating in more FL applications via the wireless environment, the practical implementation of these applications will be hindered due to the limited uplink capacity of devices, causing critical bottlenecks. In this work, we propose a novel doubly communication-efficient zero-order (ZO) method with a one-point gradient estimator that replaces communicating long vectors with scalar values and that harnesses the nature of the wireless communication channel, overcoming the need to know the channel state coefficient. It is the first method that includes the wireless channel in the learning algorithm itself instead of wasting resources to analyze it and remove its impact. We then offer a thorough analysis of the proposed zero-order federated learning (ZOFL) framework and prove that our method converges \textit{almost surely}, which is a novel result in nonconvex ZO optimization. We further prove a convergence rate of $O(\frac{1}{\sqrt[3]{K}})$ in the nonconvex setting. We finally demonstrate the potential of our algorithm with experimental results.
Autism Spectrum Disorder (ASD) is a complex neuro-developmental challenge, presenting a spectrum of difficulties in social interaction, communication, and the expression of repetitive behaviors in different situations. This increasing prevalence underscores the importance of ASD as a major public health concern and the need for comprehensive research initiatives to advance our understanding of the disorder and its early detection methods. This study introduces a novel hierarchical feature fusion method aimed at enhancing the early detection of ASD in children through the analysis of code-switched speech (English and Hindi). Employing advanced audio processing techniques, the research integrates acoustic, paralinguistic, and linguistic information using Transformer Encoders. This innovative fusion strategy is designed to improve classification robustness and accuracy, crucial for early and precise ASD identification. The methodology involves collecting a code-switched speech corpus, CoSAm, from children diagnosed with ASD and a matched control group. The dataset comprises 61 voice recordings from 30 children diagnosed with ASD and 31 from neurotypical children, aged between 3 and 13 years, resulting in a total of 159.75 minutes of voice recordings. The feature analysis focuses on MFCCs and extensive statistical attributes to capture speech pattern variability and complexity. The best model performance is achieved using a hierarchical fusion technique with an accuracy of 98.75% using a combination of acoustic and linguistic features first, followed by paralinguistic features in a hierarchical manner.
Image retrieval methods based on CNN descriptors rely on metric learning from a large number of diverse examples of positive and negative image pairs. Domains, such as night-time images, with limited availability and variability of training data suffer from poor retrieval performance even with methods performing well on standard benchmarks. We propose to train a GAN-based synthetic-image generator, translating available day-time image examples into night images. Such a generator is used in metric learning as a form of augmentation, supplying training data to the scarce domain. Various types of generators are evaluated and analyzed. We contribute with a novel light-weight GAN architecture that enforces the consistency between the original and translated image through edge consistency. The proposed architecture also allows a simultaneous training of an edge detector that operates on both night and day images. To further increase the variability in the training examples and to maximize the generalization of the trained model, we propose a novel method of diverse anchor mining. The proposed method improves over the state-of-the-art results on a standard Tokyo 24/7 day-night retrieval benchmark while preserving the performance on Oxford and Paris datasets. This is achieved without the need of training image pairs of matching day and night images. The source code is available at //github.com/mohwald/gandtr .
There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.
This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.