Quantum computing is in an era defined by rapidly evolving quantum hardware technologies, combined with persisting high gate error rates, large amounts of noise, and short coherence times. Overcoming these limitations requires systems-level approaches that account for the strengths and weaknesses of the underlying hardware technology. Yet few hardware-aware compiler techniques exist for neutral atom devices, with no prior work on compiling to the neutral atom native gate set. In particular, current neutral atom hardware does not support certain single-qubit rotations via local addressing, which often requires the circuit to be decomposed into a large number of gates, leading to long circuit durations and low overall fidelities. We propose the first compiler designed to overcome the challenges of limited local addressibility in neutral atom quantum computers. We present algorithms to decompose circuits into the neutral atom native gate set, with emphasis on optimizing total pulse area of global gates, which dominate gate execution costs in several current architectures. Furthermore, we explore atom movement as an alternative to expensive gate decompositions, gaining immense speedup with routing, which remains a huge overhead for many quantum circuits. Our decomposition optimizations result in up to ~3.5x and ~2.9x speedup in time spent executing global gates and time spent executing single-qubit gates, respectively. When combined with our atom movement routing algorithms, our compiler achieves up to ~10x reduction in circuit duration, with over ~2x improvement in fidelity. We show that our compiler strategies can be adapted for a variety of hardware-level parameters as neutral atom technology continues to develop.
Directed fuzzing is a dynamic testing technique that focuses exploration on specific, pre targeted program locations. Like other types of fuzzers, directed fuzzers are most effective when maximizing testing speed and precision. To this end, recent directed fuzzers have begun leveraging path pruning: preventing the wasteful testing of program paths deemed irrelevant to reaching a desired target location. Yet, despite code pruning's substantial speedup, current approaches are imprecise failing to capture indirect control flow requiring additional dynamic analyses that diminish directed fuzzers' speeds. Thus, without code pruning that is both fast and precise, directed fuzzers' effectiveness will continue to remain limited. This paper aims to tackle the challenge of upholding both speed and precision in pruning-based directed fuzzing. We show that existing pruning approaches fail to recover common case indirect control flow; and identify opportunities to enhance them with lightweight heuristics namely, function signature matching enabling them to maximize precision without the burden of dynamic analysis. We implement our enhanced pruning as a prototype, TOPr (Target Oriented Pruning), and evaluate it against the leading pruning based and pruning agnostic directed fuzzers SieveFuzz and AFLGo. We show that TOPr's enhanced pruning outperforms these fuzzers in (1) speed (achieving 222% and 73% higher test case throughput, respectively); (2) reachability (achieving 149% and 9% more target relevant coverage, respectively); and (3) bug discovery time (triggering bugs faster 85% and 8%, respectively). Furthermore, TOPr's balance of speed and precision enables it to find 24 new bugs in 5 open source applications, with 18 confirmed by developers, 12 bugs labelled as "Priority - 1. High", and 12 bugs fixed, underscoring the effectiveness of our framework.
The Semantic Web technologies have been used in the Internet of Things (IoT) to facilitate data interoperability and address data heterogeneity issues. The Resource Description Framework (RDF) model is employed in the integration of IoT data, with RDF engines serving as gateways for semantic integration. However, storing and querying RDF data obtained from distributed sources across a dynamic network of edge devices presents a challenging task. The distributed nature of the edge shares similarities with Peer-to-Peer (P2P) systems. These similarities include attributes like node heterogeneity, limited availability, and resources. The nodes primarily undertake tasks related to data storage and processing. Therefore, the P2P models appear to present an attractive approach for constructing distributed RDF stores. Based on P-Grid, a data indexing mechanism for load balancing and range query processing in P2P systems, this paper proposes a design for storing and sharing RDF data on P2P networks of low-cost edge devices. Our design aims to integrate both P-Grid and an edge-based RDF storage solution, RDF4Led for building an P2P RDF engine. This integration can maintain RDF data access and query processing while scaling with increasing data and network size. We demonstrated the scaling behavior of our implementation on a P2P network, involving up to 16 nodes of Raspberry Pi 4 devices.
To make effective decisions in novel environments with long-horizon goals, it is crucial to engage in hierarchical reasoning across spatial and temporal scales. This entails planning abstract subgoal sequences, visually reasoning about the underlying plans, and executing actions in accordance with the devised plan through visual-motor control. We propose Compositional Foundation Models for Hierarchical Planning (HiP), a foundation model which leverages multiple expert foundation model trained on language, vision and action data individually jointly together to solve long-horizon tasks. We use a large language model to construct symbolic plans that are grounded in the environment through a large video diffusion model. Generated video plans are then grounded to visual-motor control, through an inverse dynamics model that infers actions from generated videos. To enable effective reasoning within this hierarchy, we enforce consistency between the models via iterative refinement. We illustrate the efficacy and adaptability of our approach in three different long-horizon table-top manipulation tasks.
Optimizing video inference efficiency has become increasingly important with the growing demand for video analysis in various fields. Some existing methods achieve high efficiency by explicit discard of spatial or temporal information, which poses challenges in fast-changing and fine-grained scenarios. To address these issues, we propose an efficient video representation network with Differentiable Resolution Compression and Alignment mechanism, which compresses non-essential information in the early stage of the network to reduce computational costs while maintaining consistent temporal correlations. Specifically, we leverage a Differentiable Context-aware Compression Module to encode the saliency and non-saliency frame features, refining and updating the features into a high-low resolution video sequence. To process the new sequence, we introduce a new Resolution-Align Transformer Layer to capture global temporal correlations among frame features with different resolutions, while reducing spatial computation costs quadratically by utilizing fewer spatial tokens in low-resolution non-saliency frames. The entire network can be end-to-end optimized via the integration of the differentiable compression module. Experimental results show that our method achieves the best trade-off between efficiency and performance on near-duplicate video retrieval and competitive results on dynamic video classification compared to state-of-the-art methods. Code://github.com/dun-research/DRCA
Ground segmentation, as the basic task of unmanned intelligent perception, provides an important support for the target detection task. Unstructured road scenes represented by open-pit mines have irregular boundary lines and uneven road surfaces, which lead to segmentation errors in current ground segmentation methods. To solve this problem, a ground segmentation method based on point cloud map is proposed, which involves three parts: region of interest extraction, point cloud registration and background subtraction. Firstly, establishing boundary semantic associations to obtain regions of interest in unstructured roads. Secondly, establishing the location association between point cloud map and the real-time point cloud of region of interest by semantics information. Thirdly, establishing a background model based on Gaussian distribution according to location association, and segments the ground in real-time point cloud by the background substraction method. Experimental results show that the correct segmentation rate of ground points is 99.95%, and the running time is 26ms. Compared with state of the art ground segmentation algorithm Patchwork++, the average accuracy of ground point segmentation is increased by 7.43%, and the running time is increased by 17ms. Furthermore, the proposed method is practically applied to unstructured road scenarios represented by open pit mines.
Loop closing and relocalization are crucial techniques to establish reliable and robust long-term SLAM by addressing pose estimation drift and degeneration. This article begins by formulating loop closing and relocalization within a unified framework. Then, we propose a novel multi-head network LCR-Net to tackle both tasks effectively. It exploits novel feature extraction and pose-aware attention mechanism to precisely estimate similarities and 6-DoF poses between pairs of LiDAR scans. In the end, we integrate our LCR-Net into a SLAM system and achieve robust and accurate online LiDAR SLAM in outdoor driving environments. We thoroughly evaluate our LCR-Net through three setups derived from loop closing and relocalization, including candidate retrieval, closed-loop point cloud registration, and continuous relocalization using multiple datasets. The results demonstrate that LCR-Net excels in all three tasks, surpassing the state-of-the-art methods and exhibiting a remarkable generalization ability. Notably, our LCR-Net outperforms baseline methods without using a time-consuming robust pose estimator, rendering it suitable for online SLAM applications. To our best knowledge, the integration of LCR-Net yields the first LiDAR SLAM with the capability of deep loop closing and relocalization. The implementation of our methods will be made open-source.
Not being able to understand and predict the behavior of deep learning systems makes it hard to decide what architecture and algorithm to use for a given problem. In science and engineering, modeling is a methodology used to understand complex systems whose internal processes are opaque. Modeling replaces a complex system with a simpler, more interpretable surrogate. Drawing inspiration from this, we construct a class of surrogate models for neural networks using Gaussian processes. Rather than deriving kernels for infinite neural networks, we learn kernels empirically from the naturalistic behavior of finite neural networks. We demonstrate our approach captures existing phenomena related to the spectral bias of neural networks, and then show that our surrogate models can be used to solve practical problems such as identifying which points most influence the behavior of specific neural networks and predicting which architectures and algorithms will generalize well for specific datasets.
In the presence of heterogeneous data, where randomly rotated objects fall into multiple underlying categories, it is challenging to simultaneously classify them into clusters and synchronize them based on pairwise relations. This gives rise to the joint problem of community detection and synchronization. We propose a series of semidefinite relaxations, and prove their exact recovery when extending the celebrated stochastic block model to this new setting where both rotations and cluster identities are to be determined. Numerical experiments demonstrate the efficacy of our proposed algorithms and confirm our theoretical result which indicates a sharp phase transition for exact recovery.
Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.
Recommender System (RS) is a hot area where artificial intelligence (AI) techniques can be effectively applied to improve performance. Since the well-known Netflix Challenge, collaborative filtering (CF) has become the most popular and effective recommendation method. Despite their success in CF, various AI techniques still have to face the data sparsity and cold start problems. Previous works tried to solve these two problems by utilizing auxiliary information, such as social connections among users and meta-data of items. However, they process different types of information separately, leading to information loss. In this work, we propose to utilize Heterogeneous Information Network (HIN), which is a natural and general representation of different types of data, to enhance CF-based recommending methods. HIN-based recommender systems face two problems: how to represent high-level semantics for recommendation and how to fuse the heterogeneous information to recommend. To address these problems, we propose to applying meta-graph to HIN-based RS and solve the information fusion problem with a "matrix factorization (MF) + factorization machine (FM)" framework. For the "MF" part, we obtain user-item similarity matrices from each meta-graph and adopt low-rank matrix approximation to get latent features for both users and items. For the "FM" part, we propose to apply FM with Group lasso (FMG) on the obtained features to simultaneously predict missing ratings and select useful meta-graphs. Experimental results on two large real-world datasets, i.e., Amazon and Yelp, show that our proposed approach is better than that of the state-of-the-art FM and other HIN-based recommending methods.