In the era of the Internet of Things (IoT) and data sharing, users frequently upload their personal information to enterprise databases to enjoy enhanced service experiences provided by various online services. However, the widespread presence of system vulnerabilities, remote network intrusions, and insider threats significantly increases the exposure of private enterprise data on the internet. If such data is stolen or leaked by attackers, it can result in severe asset losses and business operation disruptions. To address these challenges, this paper proposes a novel threat detection framework, TabITD. This framework integrates Intrusion Detection Systems (IDS) with User and Entity Behavior Analytics (UEBA) strategies to form a collaborative detection system that bridges the gaps in existing systems' capabilities. It effectively addresses the blurred boundaries between external and insider threats caused by the diversification of attack methods, thereby enhancing the model's learning ability and overall detection performance. Moreover, the proposed method leverages the TabNet architecture, which employs a sparse attention feature selection mechanism that allows TabNet to select the most relevant features at each decision step, thereby improving the detection of rare-class attacks. We evaluated our proposed solution on two different datasets, achieving average accuracies of 96.71% and 97.25%, respectively. The results demonstrate that this approach can effectively detect malicious behaviors such as masquerade attacks and external threats, significantly enhancing network security defenses and the efficiency of network attack detection.
Technical troubleshooting in enterprise environments often involves navigating diverse, heterogeneous data sources to resolve complex issues effectively. This paper presents a novel agentic AI solution built on a Weighted Retrieval-Augmented Generation (RAG) Framework tailored for enterprise technical troubleshooting. By dynamically weighting retrieval sources such as product manuals, internal knowledge bases, FAQs, and troubleshooting guides based on query context, the framework prioritizes the most relevant data. For instance, it gives precedence to product manuals for SKU-specific queries while incorporating general FAQs for broader issues. The system employs FAISS for efficient dense vector search, coupled with a dynamic aggregation mechanism to seamlessly integrate results from multiple sources. A Llama-based self-evaluator ensures the contextual accuracy and confidence of the generated responses before delivering them. This iterative cycle of retrieval and validation enhances precision, diversity, and reliability in response generation. Preliminary evaluations on large enterprise datasets demonstrate the framework's efficacy in improving troubleshooting accuracy, reducing resolution times, and adapting to varied technical challenges. Future research aims to enhance the framework by integrating advanced conversational AI capabilities, enabling more interactive and intuitive troubleshooting experiences. Efforts will also focus on refining the dynamic weighting mechanism through reinforcement learning to further optimize the relevance and precision of retrieved information. By incorporating these advancements, the proposed framework is poised to evolve into a comprehensive, autonomous AI solution, redefining technical service workflows across enterprise settings.
As a typical and practical application of Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) techniques have gained extensive attention, particularly in vertical domains where LLMs may lack domain-specific knowledge. In this paper, we introduce an omnidirectional and automatic RAG benchmark, OmniEval, in the financial domain. Our benchmark is characterized by its multi-dimensional evaluation framework, including (1) a matrix-based RAG scenario evaluation system that categorizes queries into five task classes and 16 financial topics, leading to a structured assessment of diverse query scenarios; (2) a multi-dimensional evaluation data generation approach, which combines GPT-4-based automatic generation and human annotation, achieving an 87.47\% acceptance ratio in human evaluations on generated instances; (3) a multi-stage evaluation system that evaluates both retrieval and generation performance, result in a comprehensive evaluation on the RAG pipeline; and (4) robust evaluation metrics derived from rule-based and LLM-based ones, enhancing the reliability of assessments through manual annotations and supervised fine-tuning of an LLM evaluator. Our experiments demonstrate the comprehensiveness of OmniEval, which includes extensive test datasets and highlights the performance variations of RAG systems across diverse topics and tasks, revealing significant opportunities for RAG models to improve their capabilities in vertical domains. We open source the code of our benchmark in \href{//github.com/RUC-NLPIR/OmniEval}{//github.com/RUC-NLPIR/OmniEval}.
How emotions are expressed depends on the context and domain. On X (formerly Twitter), for instance, an author might simply use the hashtag #anger, while in a news headline, emotions are typically written in a more polite, indirect manner. To enable conditional text generation models to create emotionally connotated texts that fit a domain, users need to have access to a parameter that allows them to choose the appropriate way to express an emotion. To achieve this, we introduce MOPO, a Multi-Objective Prompt Optimization methodology. MOPO optimizes prompts according to multiple objectives (which correspond here to the output probabilities assigned by emotion classifiers trained for different domains). In contrast to single objective optimization, MOPO outputs a set of prompts, each with a different weighting of the multiple objectives. Users can then choose the most appropriate prompt for their context. We evaluate MOPO using three objectives, determined by various domain-specific emotion classifiers. MOPO improves performance by up to 15 pp across all objectives with a minimal loss (1-2 pp) for any single objective compared to single-objective optimization. These minor performance losses are offset by a broader generalization across multiple objectives - which is not possible with single-objective optimization. Additionally, MOPO reduces computational requirements by simultaneously optimizing for multiple objectives, eliminating separate optimization procedures for each objective.
Despite demonstrating impressive capabilities, Large Language Models (LLMs) still often struggle to accurately express the factual knowledge they possess, especially in cases where the LLMs' knowledge boundaries are ambiguous. To improve LLMs' factual expressions, we propose the UAlign framework, which leverages Uncertainty estimations to represent knowledge boundaries, and then explicitly incorporates these representations as input features into prompts for LLMs to Align with factual knowledge. First, we prepare the dataset on knowledge question-answering (QA) samples by calculating two uncertainty estimations, including confidence score and semantic entropy, to represent the knowledge boundaries for LLMs. Subsequently, using the prepared dataset, we train a reward model that incorporates uncertainty estimations and then employ the Proximal Policy Optimization (PPO) algorithm for factuality alignment on LLMs. Experimental results indicate that, by integrating uncertainty representations in LLM alignment, the proposed UAlign can significantly enhance the LLMs' capacities to confidently answer known questions and refuse unknown questions on both in-domain and out-of-domain tasks, showing reliability improvements and good generalizability over various prompt- and training-based baselines.
Recent studies have highlighted significant fairness issues in Graph Transformer (GT) models, particularly against subgroups defined by sensitive features. Additionally, GTs are computationally intensive and memory-demanding, limiting their application to large-scale graphs. Our experiments demonstrate that graph partitioning can enhance the fairness of GT models while reducing computational complexity. To understand this improvement, we conducted a theoretical investigation into the root causes of fairness issues in GT models. We found that the sensitive features of higher-order nodes disproportionately influence lower-order nodes, resulting in sensitive feature bias. We propose Fairness-aware scalable GT based on Graph Partitioning (FairGP), which partitions the graph to minimize the negative impact of higher-order nodes. By optimizing attention mechanisms, FairGP mitigates the bias introduced by global attention, thereby enhancing fairness. Extensive empirical evaluations on six real-world datasets validate the superior performance of FairGP in achieving fairness compared to state-of-the-art methods. The codes are available at //github.com/LuoRenqiang/FairGP.
Large Language Models (LLMs) are increasingly employed in complex workflows, where different LLMs and fine-tuned variants collaboratively address complex tasks. However, these systems face significant inefficiencies due to redundant context processing of the shared context. We propose DroidSpeak, a framework that optimizes context sharing between fine-tuned LLMs derived from the same foundational model. DroidSpeak identifies critical layers in the KV cache and selectively recomputes them, enabling effective reuse of intermediate data while maintaining high accuracy. Our approach balances computational efficiency and task fidelity, significantly reducing inference latency and throughput bottlenecks. Experiments on diverse datasets and model pairs demonstrate that DroidSpeak achieves up to 3x higher throughputs and 2.6x faster prefill times with negligible accuracy loss compared to full recomputation.
We consider the well-known and important tasks of clone detection and information retrieval for source code. The most standard setup is to search clones inside the same language code snippets. But it is also useful to find code snippets with identical behaviour in different programming languages. Nevertheless multi- and cross-lingual clone detection has been little studied in literature. We present a novel training procedure, cross-consistency training (CCT) leveraging cross-lingual similarity, that we apply to train language models on source code in various programming languages. We show that this training is effective both for encoder- and decoder-based models. The trained encoder-based CCT-LM model achieves a new state of the art on POJ-104 (monolingual C++ clone detection benchmark) with 96.73\% MAP and AdvTest (monolingual Python code search benchmark) with 47.18\% MRR. The decoder-based CCT-LM model shows comparable performance in these tasks. In addition, we formulate the multi- and cross-lingual clone detection problem and present XCD, a new benchmark dataset produced from CodeForces submissions.
The generation of Scalable Vector Graphics (SVG) assets from textual data remains a significant challenge, largely due to the scarcity of high-quality vector datasets and the limitations in scalable vector representations required for modeling intricate graphic distributions. This work introduces SVGFusion, a Text-to-SVG model capable of scaling to real-world SVG data without reliance on a text-based discrete language model or prolonged SDS optimization. The essence of SVGFusion is to learn a continuous latent space for vector graphics with a popular Text-to-Image framework. Specifically, SVGFusion consists of two modules: a Vector-Pixel Fusion Variational Autoencoder (VP-VAE) and a Vector Space Diffusion Transformer (VS-DiT). VP-VAE takes both the SVGs and corresponding rasterizations as inputs and learns a continuous latent space, whereas VS-DiT learns to generate a latent code within this space based on the text prompt. Based on VP-VAE, a novel rendering sequence modeling strategy is proposed to enable the latent space to embed the knowledge of construction logics in SVGs. This empowers the model to achieve human-like design capabilities in vector graphics, while systematically preventing occlusion in complex graphic compositions. Moreover, our SVGFusion's ability can be continuously improved by leveraging the scalability of the VS-DiT by adding more VS-DiT blocks. A large-scale SVG dataset is collected to evaluate the effectiveness of our proposed method. Extensive experimentation has confirmed the superiority of our SVGFusion over existing SVG generation methods, achieving enhanced quality and generalizability, thereby establishing a novel framework for SVG content creation. Code, model, and data will be released at: \href{//ximinng.github.io/SVGFusionProject/}{//ximinng.github.io/SVGFusionProject/}
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.