Microcanonical gradient descent is a sampling procedure for energy-based models allowing for efficient sampling of distributions in high dimension. It works by transporting samples from a high-entropy distribution, such as Gaussian white noise, to a low-energy region using gradient descent. We put this model in the framework of normalizing flows, showing how it can often overfit by losing an unnecessary amount of entropy in the descent. As a remedy, we propose a mean-field microcanonical gradient descent that samples several weakly coupled data points simultaneously, allowing for better control of the entropy loss while paying little in terms of likelihood fit. We study these models in the context of financial time series, illustrating the improvements on both synthetic and real data.
Despite the recent progress in long-context language models, it remains elusive how transformer-based models exhibit the capability to retrieve relevant information from arbitrary locations within the long context. This paper aims to address this question. Our systematic investigation across a wide spectrum of models reveals that a special type of attention heads are largely responsible for retrieving information, which we dub retrieval heads. We identify intriguing properties of retrieval heads:(1) universal: all the explored models with long-context capability have a set of retrieval heads; (2) sparse: only a small portion (less than 5\%) of the attention heads are retrieval. (3) intrinsic: retrieval heads already exist in models pretrained with short context. When extending the context length by continual pretraining, it is still the same set of heads that perform information retrieval. (4) dynamically activated: take Llama-2 7B for example, 12 retrieval heads always attend to the required information no matter how the context is changed. The rest of the retrieval heads are activated in different contexts. (5) causal: completely pruning retrieval heads leads to failure in retrieving relevant information and results in hallucination, while pruning random non-retrieval heads does not affect the model's retrieval ability. We further show that retrieval heads strongly influence chain-of-thought (CoT) reasoning, where the model needs to frequently refer back the question and previously-generated context. Conversely, tasks where the model directly generates the answer using its intrinsic knowledge are less impacted by masking out retrieval heads. These observations collectively explain which internal part of the model seeks information from the input tokens. We believe our insights will foster future research on reducing hallucination, improving reasoning, and compressing the KV cache.
Qini curves have emerged as an attractive and popular approach for evaluating the benefit of data-driven targeting rules for treatment allocation. We propose a generalization of the Qini curve to multiple costly treatment arms, that quantifies the value of optimally selecting among both units and treatment arms at different budget levels. We develop an efficient algorithm for computing these curves and propose bootstrap-based confidence intervals that are exact in large samples for any point on the curve. These confidence intervals can be used to conduct hypothesis tests comparing the value of treatment targeting using an optimal combination of arms with using just a subset of arms, or with a non-targeting assignment rule ignoring covariates, at different budget levels. We demonstrate the statistical performance in a simulation experiment and an application to treatment targeting for election turnout.
Integrating and processing information from various sources or modalities are critical for obtaining a comprehensive and accurate perception of the real world. Drawing inspiration from neuroscience, we develop the Information-Theoretic Hierarchical Perception (ITHP) model, which utilizes the concept of information bottleneck. Distinct from most traditional fusion models that aim to incorporate all modalities as input, our model designates the prime modality as input, while the remaining modalities act as detectors in the information pathway. Our proposed perception model focuses on constructing an effective and compact information flow by achieving a balance between the minimization of mutual information between the latent state and the input modal state, and the maximization of mutual information between the latent states and the remaining modal states. This approach leads to compact latent state representations that retain relevant information while minimizing redundancy, thereby substantially enhancing the performance of downstream tasks. Experimental evaluations on both the MUStARD and CMU-MOSI datasets demonstrate that our model consistently distills crucial information in multimodal learning scenarios, outperforming state-of-the-art benchmarks.
There is increasing interest to develop Bayesian inferential algorithms for point process models with intractable likelihoods. A purpose of this paper is to illustrate the utility of using simulation based strategies, including approximate Bayesian computation (ABC) and Markov chain Monte Carlo (MCMC) methods for this task. Shirota and Gelfand (2017) proposed an extended version of an ABC approach for repulsive spatial point processes, including the Strauss point process and the determinantal point process, but their algorithm was not correctly detailed. We explain that is, in general, intractable and therefore impractical to use, except in some restrictive situations. This motivates us to instead consider an ABC-MCMC algorithm developed by Fearnhead and Prangle (2012). We further explore the use of the exchange algorithm, together with the recently proposed noisy Metropolis-Hastings algorithm (Alquier et al., 2016). As an extension of the exchange algorithm, which requires a single simulation from the likelihood at each iteration, the noisy Metropolis-Hastings algorithm considers multiple draws from the same likelihood function. We find that both of these inferential approaches yield good performance for repulsive spatial point processes in both simulated and real data applications and should be considered as viable approaches for the analysis of these models.
Recent progress in large-scale zero-shot speech synthesis has been significantly advanced by language models and diffusion models. However, the generation process of both methods is slow and computationally intensive. Efficient speech synthesis using a lower computing budget to achieve quality on par with previous work remains a significant challenge. In this paper, we present FlashSpeech, a large-scale zero-shot speech synthesis system with approximately 5\% of the inference time compared with previous work. FlashSpeech is built on the latent consistency model and applies a novel adversarial consistency training approach that can train from scratch without the need for a pre-trained diffusion model as the teacher. Furthermore, a new prosody generator module enhances the diversity of prosody, making the rhythm of the speech sound more natural. The generation processes of FlashSpeech can be achieved efficiently with one or two sampling steps while maintaining high audio quality and high similarity to the audio prompt for zero-shot speech generation. Our experimental results demonstrate the superior performance of FlashSpeech. Notably, FlashSpeech can be about 20 times faster than other zero-shot speech synthesis systems while maintaining comparable performance in terms of voice quality and similarity. Furthermore, FlashSpeech demonstrates its versatility by efficiently performing tasks like voice conversion, speech editing, and diverse speech sampling. Audio samples can be found in //flashspeech.github.io/.
Travel mode choice (TMC) prediction, which can be formulated as a classification task, helps in understanding what makes citizens choose different modes of transport for individual trips. This is also a major step towards fostering sustainable transportation. As behaviour may evolve over time, we also face the question of detecting concept drift in the data. This necessitates using appropriate methods to address potential concept drift. In particular, it is necessary to decide whether batch or stream mining methods should be used to develop periodically updated TMC models. To address the challenge of the development of TMC models, we propose the novel Incremental Ensemble of Batch and Stream Models (IEBSM) method aimed at adapting travel mode choice classifiers to concept drift possibly occurring in the data. It relies on the combination of drift detectors with batch learning and stream mining models. We compare it against batch and incremental learners, including methods relying on active drift detection. Experiments with varied travel mode data sets representing both city and country levels show that the IEBSM method both detects drift in travel mode data and successfully adapts the models to evolving travel mode choice data. The method has a higher rank than batch and stream learners.
Contemporary accelerator designs exhibit a high degree of spatial localization, wherein two-dimensional physical distance determines communication costs between processing elements. This situation presents considerable algorithmic challenges, particularly when managing sparse data, a pivotal component in progressing data science. The spatial computer model quantifies communication locality by weighting processor communication costs by distance, introducing a term named energy. Moreover, it integrates depth, a widely-utilized metric, to promote high parallelism. We propose and analyze a framework for efficient spatial tree algorithms within the spatial computer model. Our primary method constructs a spatial tree layout that optimizes the locality of the neighbors in the compute grid. This approach thereby enables locality-optimized messaging within the tree. Our layout achieves a polynomial factor improvement in energy compared to utilizing a PRAM approach. Using this layout, we develop energy-efficient treefix sum and lowest common ancestor algorithms, which are both fundamental building blocks for other graph algorithms. With high probability, our algorithms exhibit near-linear energy and poly-logarithmic depth. Our contributions augment a growing body of work demonstrating that computations can have both high spatial locality and low depth. Moreover, our work constitutes an advancement in the spatial layout of irregular and sparse computations.
Diffusion generative modelling (DGM) based on stochastic differential equations (SDEs) with score matching has achieved unprecedented results in data generation. In this paper, we propose a novel fast high-quality generative modelling method based on high-order Langevin dynamics (HOLD) with score matching. This motive is proved by third-order Langevin dynamics. By augmenting the previous SDEs, e.g. variance exploding or variance preserving SDEs for single-data variable processes, HOLD can simultaneously model position, velocity, and acceleration, thereby improving the quality and speed of the data generation at the same time. HOLD is composed of one Ornstein-Uhlenbeck process and two Hamiltonians, which reduce the mixing time by two orders of magnitude. Empirical experiments for unconditional image generation on the public data set CIFAR-10 and CelebA-HQ show that the effect is significant in both Frechet inception distance (FID) and negative log-likelihood, and achieves the state-of-the-art FID of 1.85 on CIFAR-10.
Training energy-based models (EBMs) on high-dimensional data can be both challenging and time-consuming, and there exists a noticeable gap in sample quality between EBMs and other generative frameworks like GANs and diffusion models. To close this gap, inspired by the recent efforts of learning EBMs by maximizing diffusion recovery likelihood (DRL), we propose cooperative diffusion recovery likelihood (CDRL), an effective approach to tractably learn and sample from a series of EBMs defined on increasingly noisy versions of a dataset, paired with an initializer model for each EBM. At each noise level, the two models are jointly estimated within a cooperative training framework: samples from the initializer serve as starting points that are refined by a few MCMC sampling steps from the EBM. The EBM is then optimized by maximizing recovery likelihood, while the initializer model is optimized by learning from the difference between the refined samples and the initial samples. In addition, we made several practical designs for EBM training to further improve the sample quality. Combining these advances, our approach significantly boost the generation performance compared to existing EBM methods on CIFAR-10 and ImageNet datasets. We also demonstrate the effectiveness of our models for several downstream tasks, including classifier-free guided generation, compositional generation, image inpainting and out-of-distribution detection.
Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.