亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Longitudinal studies are subject to nonresponse when individuals fail to provide data for entire waves or particular questions of the survey. We compare approaches to nonresponse bias analysis (NRBA) in longitudinal studies and illustrate them on the Early Childhood Longitudinal Study, Kindergarten Class of 2010-11 (ECLS-K:2011). Wave nonresponse with attrition often yields a monotone missingness pattern, and the missingness mechanism can be missing at random (MAR) or missing not at random (MNAR). We discuss weighting, multiple imputation (MI), incomplete data modeling, and Bayesian approaches to NRBA for monotone patterns. Weighting adjustments are effective when the constructed weights are correlated to the survey outcome of interest. MI allows for variables with missing values to be included in the imputation model, yielding potentially less biased and more efficient estimates. Multilevel models with maximum likelihood estimation and marginal models estimated using generalized estimating equations can also handle incomplete longitudinal data. Bayesian methods introduce prior information and potentially stabilize model estimation. We add offsets in the MAR results to provide sensitivity analyses to assess MNAR deviations. We conduct NRBA for descriptive summaries and analytic model estimates and find that in the ECLS-K:2011 application, NRBA yields minor changes to the substantive conclusions. The strength of evidence about our NRBA depends on the strength of the relationship between the characteristics in the nonresponse adjustment and the key survey outcomes, so the key to a successful NRBA is to include strong predictors.

相關內容

The field of emotion recognition of conversation (ERC) has been focusing on separating sentence feature encoding and context modeling, lacking exploration in generative paradigms based on unified designs. In this study, we propose a novel approach, \textbf{InstructERC}, to reformulate the ERC task from a discriminative framework to a generative framework based on Large Language Models (LLMs). InstructERC makes three significant contributions: (1) it introduces a simple yet effective retrieval template module, which helps the model explicitly integrate multi-granularity dialogue supervision information. (2) We introduce two additional emotion alignment tasks, namely speaker identification and emotion prediction tasks, to implicitly model the dialogue role relationships and future emotional tendencies in conversations. (3) Pioneeringly, we unify emotion labels across benchmarks through the feeling wheel to fit real application scenarios. InstructERC still perform impressively on this unified dataset. Our LLM-based plugin framework significantly outperforms all previous models and achieves comprehensive SOTA on three commonly used ERC datasets. Extensive analysis of parameter-efficient and data-scaling experiments provides empirical guidance for applying it in practical scenarios. Our code and aligned unified dataset (UIME) can be found in the Github link.\footnote{You can find the offical realization in the Github link: //github.com/LIN-SHANG/InstructERC}

This paper proposes a method for the automatic creation of variables (in the case of regression) that complement the information contained in the initial input vector. The method works as a pre-processing step in which the continuous values of the variable to be regressed are discretized into a set of intervals which are then used to define value thresholds. Then classifiers are trained to predict whether the value to be regressed is less than or equal to each of these thresholds. The different outputs of the classifiers are then concatenated in the form of an additional vector of variables that enriches the initial vector of the regression problem. The implemented system can thus be considered as a generic pre-processing tool. We tested the proposed enrichment method with 5 types of regressors and evaluated it in 33 regression datasets. Our experimental results confirm the interest of the approach.

User alignment is crucial for adapting general-purpose language models (LMs) to downstream tasks, but human annotations are often not available for all types of instructions, especially those with customized constraints. We observe that user instructions typically contain constraints. While assessing response quality in terms of the whole instruction is often costly, efficiently evaluating the satisfaction rate of constraints is feasible. We investigate common constraints in NLP tasks, categorize them into three classes based on the types of their arguments, and propose a unified framework, ACT (Aligning to ConsTraints), to automatically produce supervision signals for user alignment with constraints. Specifically, ACT uses constraint verifiers, which are typically easy to implement in practice, to compute constraint satisfaction rate (CSR) of each response. It samples multiple responses for each prompt and collect preference labels based on their CSR automatically. Subsequently, ACT adapts the LM to the target task through a ranking-based learning process. Experiments on fine-grained entity typing, abstractive summarization, and temporal question answering show that ACT is able to enhance LMs' capability to adhere to different classes of constraints, thereby improving task performance. Further experiments show that the constraint-following capabilities are transferable.

Understanding the dimension dependency of computational complexity in high-dimensional sampling problem is a fundamental problem, both from a practical and theoretical perspective. Compared with samplers with unbiased stationary distribution, e.g., Metropolis-adjusted Langevin algorithm (MALA), biased samplers, e.g., Underdamped Langevin Dynamics (ULD), perform better in low-accuracy cases just because a lower dimension dependency in their complexities. Along this line, Freund et al. (2022) suggest that the modified Langevin algorithm with prior diffusion is able to converge dimension independently for strongly log-concave target distributions. Nonetheless, it remains open whether such property establishes for more general cases. In this paper, we investigate the prior diffusion technique for the target distributions satisfying log-Sobolev inequality (LSI), which covers a much broader class of distributions compared to the strongly log-concave ones. In particular, we prove that the modified Langevin algorithm can also obtain the dimension-independent convergence of KL divergence with different step size schedules. The core of our proof technique is a novel construction of an interpolating SDE, which significantly helps to conduct a more accurate characterization of the discrete updates of the overdamped Langevin dynamics. Our theoretical analysis demonstrates the benefits of prior diffusion for a broader class of target distributions and provides new insights into developing faster sampling algorithms.

This work introduces a flexible and versatile method for the data-efficient yet conservative transmission of covariance matrices, where a matrix element is only transmitted if a so-called triggering condition is satisfied for the element. Here, triggering conditions can be parametrized on a per-element basis, applied simultaneously to yield combined triggering conditions or applied only to certain subsets of elements. This allows, e.g., to specify transmission accuracies for individual elements or to constrain the bandwidth available for the transmission of subsets of elements. Additionally, a methodology for learning triggering condition parameters from an application-specific dataset is presented. The performance of the proposed approach is quantitatively assessed in terms of data reduction and conservativeness using estimate data derived from real-world vehicle trajectories from the InD-dataset, demonstrating substantial data reduction ratios with minimal over-conservativeness. The feasibility of learning triggering condition parameters is demonstrated.

We propose an instrumental variable framework for identifying and estimating average and quantile effects of discrete and continuous treatments with binary instruments. The basis of our approach is a local copula representation of the joint distribution of the potential outcomes and unobservables determining treatment assignment. This representation allows us to introduce an identifying assumption, so-called copula invariance, that restricts the local dependence of the copula with respect to the treatment propensity. We show that copula invariance identifies treatment effects for the entire population and other subpopulations such as the treated. The identification results are constructive and lead to straightforward semiparametric estimation procedures based on distribution regression. An application to the effect of sleep on well-being uncovers interesting patterns of heterogeneity.

Changes in the timescales at which complex systems evolve are essential to predicting critical transitions and catastrophic failures. Disentangling the timescales of the dynamics governing complex systems remains a key challenge. With this study, we introduce an integrated Bayesian framework based on temporal network models to address this challenge. We focus on two methodologies: change point detection for identifying shifts in system dynamics, and a spectrum analysis for inferring the distribution of timescales. Applied to synthetic and empirical datasets, these methologies robustly identify critical transitions and comprehensively map the dominant and subsidiaries timescales in complex systems. This dual approach offers a powerful tool for analyzing temporal networks, significantly enhancing our understanding of dynamic behaviors in complex systems.

Optimal decision-making for trajectory tracking in partially observable, stochastic environments where the number of active localization updates -- the process by which the agent obtains its true state information from the sensors -- are limited, presents a significant challenge. Traditional methods often struggle to balance resource conservation, accurate state estimation and precise tracking, resulting in suboptimal performance. This problem is particularly pronounced in environments with large action spaces, where the need for frequent, accurate state data is paramount, yet the capacity for active localization updates is restricted by external limitations. This paper introduces ComTraQ-MPC, a novel framework that combines Deep Q-Networks (DQN) and Model Predictive Control (MPC) to optimize trajectory tracking with constrained active localization updates. The meta-trained DQN ensures adaptive active localization scheduling, while the MPC leverages available state information to improve tracking. The central contribution of this work is their reciprocal interaction: DQN's update decisions inform MPC's control strategy, and MPC's outcomes refine DQN's learning, creating a cohesive, adaptive system. Empirical evaluations in simulated and real-world settings demonstrate that ComTraQ-MPC significantly enhances operational efficiency and accuracy, providing a generalizable and approximately optimal solution for trajectory tracking in complex partially observable environments.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司