亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sentiment Classification is a fundamental task in the field of Natural Language Processing, and has very important academic and commercial applications. It aims to automatically predict the degree of sentiment present in a text that contains opinions and subjectivity at some level, like product and movie reviews, or tweets. This can be really difficult to accomplish, in part, because different domains of text contains different words and expressions. In addition, this difficulty increases when text is written in a non-English language due to the lack of databases and resources. As a consequence, several cross-domain and cross-language techniques are often applied to this task in order to improve the results. In this work we perform a study on the ability of a classification system trained with a large database of product reviews to generalize to different Spanish domains. Reviews were collected from the MercadoLibre website from seven Latin American countries, allowing the creation of a large and balanced dataset. Results suggest that generalization across domains is feasible though very challenging when trained with these product reviews, and can be improved by pre-training and fine-tuning the classification model.

相關內容

情(qing)(qing)感(gan)分(fen)(fen)類(lei)(lei)是(shi)對(dui)帶有感(gan)情(qing)(qing)色彩的主(zhu)(zhu)觀(guan)性文(wen)本(ben)進行分(fen)(fen)析(xi)、推理的過程,即分(fen)(fen)析(xi)對(dui)說(shuo)話人的態度,傾向正面,還是(shi)反面。它與傳(chuan)統的文(wen)本(ben)主(zhu)(zhu)題分(fen)(fen)類(lei)(lei)又不相同,傳(chuan)統主(zhu)(zhu)題分(fen)(fen)類(lei)(lei)是(shi)分(fen)(fen)析(xi)文(wen)本(ben)討論的客(ke)觀(guan)內容,而(er)情(qing)(qing)感(gan)分(fen)(fen)類(lei)(lei)是(shi)要從文(wen)本(ben)中得到它是(shi)否支持某種(zhong)觀(guan)點的信息。

Hate speech has become one of the most significant issues in modern society, having implications in both the online and the offline world. Due to this, hate speech research has recently gained a lot of traction. However, most of the work has primarily focused on text media with relatively little work on images and even lesser on videos. Thus, early stage automated video moderation techniques are needed to handle the videos that are being uploaded to keep the platform safe and healthy. With a view to detect and remove hateful content from the video sharing platforms, our work focuses on hate video detection using multi-modalities. To this end, we curate ~43 hours of videos from BitChute and manually annotate them as hate or non-hate, along with the frame spans which could explain the labelling decision. To collect the relevant videos we harnessed search keywords from hate lexicons. We observe various cues in images and audio of hateful videos. Further, we build deep learning multi-modal models to classify the hate videos and observe that using all the modalities of the videos improves the overall hate speech detection performance (accuracy=0.798, macro F1-score=0.790) by ~5.7% compared to the best uni-modal model in terms of macro F1 score. In summary, our work takes the first step toward understanding and modeling hateful videos on video hosting platforms such as BitChute.

Stochastic partial differential equations have been used in a variety of contexts to model the evolution of uncertain dynamical systems. In recent years, their applications to geophysical fluid dynamics has increased massively. For a judicious usage in modelling fluid evolution, one needs to calibrate the amplitude of the noise to data. In this paper we address this requirement for the stochastic rotating shallow water (SRSW) model. This work is a continuation of [LvLCP23], where a data assimilation methodology has been introduced for the SRSW model. The noise used in [LvLCP23] was introduced as an arbitrary random phase shift in the Fourier space. This is not necessarily consistent with the uncertainty induced by a model reduction procedure. In this paper, we introduce a new method of noise calibration of the SRSW model which is compatible with the model reduction technique. The method is generic and can be applied to arbitrary stochastic parametrizations. It is also agnostic as to the source of data (real or synthetic). It is based on a principal component analysis technique to generate the eigenvectors and the eigenvalues of the covariance matrix of the stochastic parametrization. For SRSW model covered in this paper, we calibrate the noise by using the elevation variable of the model, as this is an observable easily obtainable in practical application, and use synthetic data as input for the calibration procedure.

Text classification has become a crucial task in various fields, leading to a significant amount of research on developing automated text classification systems for national and international languages. However, there is a growing need for automated text classification systems that can handle local languages. This study aims to establish an automated classification system for Pashto text. To achieve this goal, we constructed a dataset of Pashto documents and applied various models, including statistical and neural machine learning models such as DistilBERT-base-multilingual-cased, Multilayer Perceptron, Support Vector Machine, K Nearest Neighbor, decision tree, Gaussian na\"ive Bayes, multinomial na\"ive Bayes, random forest, and logistic regression, to identify the most effective approach. We also evaluated two different feature extraction methods, bag of words and Term Frequency Inverse Document Frequency. The study achieved an average testing accuracy rate of 94% using the MLP classification algorithm and TFIDF feature extraction method in single-label multiclass classification. Similarly, MLP+TFIDF yielded the best results, with an F1-measure of 0.81. Furthermore, the use of pre-trained language representation models, such as DistilBERT, showed promising results for Pashto text classification; however, the study highlights the importance of developing a specific tokenizer for a particular language to achieve reasonable results.

In recent years, sentiment analysis has gained significant importance in natural language processing. However, most existing models and datasets for sentiment analysis are developed for high-resource languages, such as English and Chinese, leaving low-resource languages, particularly African languages, largely unexplored. The AfriSenti-SemEval 2023 Shared Task 12 aims to fill this gap by evaluating sentiment analysis models on low-resource African languages. In this paper, we present our solution to the shared task, where we employed different multilingual XLM-R models with classification head trained on various data, including those retrained in African dialects and fine-tuned on target languages. Our team achieved the third-best results in Subtask B, Track 16: Multilingual, demonstrating the effectiveness of our approach. While our model showed relatively good results on multilingual data, it performed poorly in some languages. Our findings highlight the importance of developing more comprehensive datasets and models for low-resource African languages to advance sentiment analysis research. We also provided the solution on the github repository.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

While deep learning strategies achieve outstanding results in computer vision tasks, one issue remains. The current strategies rely heavily on a huge amount of labeled data. In many real-world problems it is not feasible to create such an amount of labeled training data. Therefore, researchers try to incorporate unlabeled data into the training process to reach equal results with fewer labels. Due to a lot of concurrent research, it is difficult to keep track of recent developments. In this survey we provide an overview of often used techniques and methods in image classification with fewer labels. We compare 21 methods. In our analysis we identify three major trends. 1. State-of-the-art methods are scaleable to real world applications based on their accuracy. 2. The degree of supervision which is needed to achieve comparable results to the usage of all labels is decreasing. 3. All methods share common techniques while only few methods combine these techniques to achieve better performance. Based on all of these three trends we discover future research opportunities.

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.

北京阿比特科技有限公司