Creating fair AI systems is a complex problem that involves the assessment of context-dependent bias concerns. Existing research and programming libraries express specific concerns as measures of bias that they aim to constrain or mitigate. In practice, one should explore a wide variety of (sometimes incompatible) measures before deciding which ones warrant corrective action, but their narrow scope means that most new situations can only be examined after devising new measures. In this work, we present a mathematical framework that distils literature measures of bias into building blocks, hereby facilitating new combinations to cover a wide range of fairness concerns, such as classification or recommendation differences across multiple multi-value sensitive attributes (e.g., many genders and races, and their intersections). We show how this framework generalizes existing concepts and present frequently used blocks. We provide an open-source implementation of our framework as a Python library, called FairBench, that facilitates systematic and extensible exploration of potential bias concerns.
Understanding degraded speech is demanding, requiring increased listening effort (LE). Evaluating processed and unprocessed speech with respect to LE can objectively indicate if speech enhancement systems benefit listeners. However, existing methods for measuring LE are complex and not widely applicable. In this study, we propose a simple method to evaluate speech intelligibility and LE simultaneously without additional strain on subjects or operators. We assess this method using results from two independent studies in Norway and Denmark, testing 76 (50+26) subjects across 9 (6+3) processing conditions. Despite differences in evaluation setups, subject recruitment, and processing systems, trends are strikingly similar, demonstrating the proposed method's robustness and ease of implementation into existing practices.
We argue that Content-based filtering (CBF) and Graph-based methods (GB) complement one another in Academic Search recommendations. The scientific literature can be viewed as a conversation between authors and the audience. CBF uses abstracts to infer authors' positions, and GB uses citations to infer responses from the audience. In this paper, we describe nine differences between CBF and GB, as well as synergistic opportunities for hybrid combinations. Two embeddings will be used to illustrate these opportunities: (1) Specter, a CBF method based on BERT-like deepnet encodings of abstracts, and (2) ProNE, a GB method based on spectral clustering of more than 200M papers and 2B citations from Semantic Scholar.
We consider the problem of allocating indivisible resources to players so as to maximize the minimum total value any player receives. This problem is sometimes dubbed the Santa Claus problem and its different variants have been subject to extensive research towards approximation algorithms over the past two decades. In the case where each player has a potentially different additive valuation function, Chakrabarty, Chuzhoy, and Khanna [FOCS'09] gave an $O(n^{\epsilon})$-approximation algorithm with polynomial running time for any constant $\epsilon > 0$ and a polylogarithmic approximation algorithm in quasi-polynomial time. We show that the same can be achieved for monotone submodular valuation functions, improving over the previously best algorithm due to Goemans, Harvey, Iwata, and Mirrokni [SODA'09], which has an approximation ratio of more than $\sqrt{n}$. Our result builds up on a sophisticated LP relaxation, which has a recursive block structure that allows us to solve it despite having exponentially many variables and constraints.
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.
Technology ecosystems often undergo significant transformations as they mature. For example, telephony, the Internet, and PCs all started with a single provider, but in the United States each is now served by a competitive market that uses comprehensive and universal technology standards to provide compatibility. This white paper presents our view on how the cloud ecosystem, barely over fifteen years old, could evolve as it matures.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.
Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.
Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.
Graph Convolutional Networks (GCNs) and their variants have experienced significant attention and have become the de facto methods for learning graph representations. GCNs derive inspiration primarily from recent deep learning approaches, and as a result, may inherit unnecessary complexity and redundant computation. In this paper, we reduce this excess complexity through successively removing nonlinearities and collapsing weight matrices between consecutive layers. We theoretically analyze the resulting linear model and show that it corresponds to a fixed low-pass filter followed by a linear classifier. Notably, our experimental evaluation demonstrates that these simplifications do not negatively impact accuracy in many downstream applications. Moreover, the resulting model scales to larger datasets, is naturally interpretable, and yields up to two orders of magnitude speedup over FastGCN.
We propose a Bayesian convolutional neural network built upon Bayes by Backprop and elaborate how this known method can serve as the fundamental construct of our novel, reliable variational inference method for convolutional neural networks. First, we show how Bayes by Backprop can be applied to convolutional layers where weights in filters have probability distributions instead of point-estimates; and second, how our proposed framework leads with various network architectures to performances comparable to convolutional neural networks with point-estimates weights. In the past, Bayes by Backprop has been successfully utilised in feedforward and recurrent neural networks, but not in convolutional ones. This work symbolises the extension of the group of Bayesian neural networks which encompasses all three aforementioned types of network architectures now.