亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

One critical challenge in 6D object pose estimation from a single RGBD image is efficient integration of two different modalities, i.e., color and depth. In this work, we tackle this problem by a novel Deep Fusion Transformer~(DFTr) block that can aggregate cross-modality features for improving pose estimation. Unlike existing fusion methods, the proposed DFTr can better model cross-modality semantic correlation by leveraging their semantic similarity, such that globally enhanced features from different modalities can be better integrated for improved information extraction. Moreover, to further improve robustness and efficiency, we introduce a novel weighted vector-wise voting algorithm that employs a non-iterative global optimization strategy for precise 3D keypoint localization while achieving near real-time inference. Extensive experiments show the effectiveness and strong generalization capability of our proposed 3D keypoint voting algorithm. Results on four widely used benchmarks also demonstrate that our method outperforms the state-of-the-art methods by large margins.

相關內容

Capturing intricate and subtle variations in human expressiveness in music performance using computational approaches is challenging. In this paper, we propose a novel approach for reconstructing human expressiveness in piano performance with a multi-layer bi-directional Transformer encoder. To address the needs for large amounts of accurately captured and score-aligned performance data in training neural networks, we use transcribed scores obtained from an existing transcription model to train our model. We integrate pianist identities to control the sampling process and explore the ability of our system to model variations in expressiveness for different pianists. The system is evaluated through statistical analysis of generated expressive performances and a listening test. Overall, the results suggest that our method achieves state-of-the-art in generating human-like piano performances from transcribed scores, while fully and consistently reconstructing human expressiveness poses further challenges.

Learned image compression possesses a unique challenge when incorporating non-differentiable quantization into the gradient-based training of the networks. Several quantization surrogates have been proposed to fulfill the training, but they were not systematically justified from a theoretical perspective. We fill this gap by contrasting uniform scalar quantization, the most widely used category with rounding being its simplest case, and its training surrogates. In principle, we find two factors crucial: one is the discrepancy between the surrogate and rounding, leading to train-test mismatch; the other is gradient estimation risk due to the surrogate, which consists of bias and variance of the gradient estimation. Our analyses and simulations imply that there is a tradeoff between the train-test mismatch and the gradient estimation risk, and the tradeoff varies across different network structures. Motivated by these analyses, we present a method based on stochastic uniform annealing, which has an adjustable temperature coefficient to control the tradeoff. Moreover, our analyses enlighten us as to two subtle tricks: one is to set an appropriate lower bound for the variance parameter of the estimated quantized latent distribution, which effectively reduces the train-test mismatch; the other is to use zero-center quantization with partial stop-gradient, which reduces the gradient estimation variance and thus stabilize the training. Our method with the tricks is verified to outperform the existing practices of quantization surrogates on a variety of representative image compression networks.

Crowd navigation has received increasing attention from researchers over the last few decades, resulting in the emergence of numerous approaches aimed at addressing this problem to date. Our proposed approach couples agent motion prediction and planning to avoid the freezing robot problem while simultaneously capturing multi-agent social interactions by utilizing a state-of-the-art trajectory prediction model i.e., social long short-term memory model (Social-LSTM). Leveraging the output of Social-LSTM for the prediction of future trajectories of pedestrians at each time-step given the robot's possible actions, our framework computes the optimal control action using Model Predictive Control (MPC) for the robot to navigate among pedestrians. We demonstrate the effectiveness of our proposed approach in multiple scenarios of simulated crowd navigation and compare it against several state-of-the-art reinforcement learning-based methods.

The primary bottleneck towards obtaining good recognition performance in IR images is the lack of sufficient labeled training data, owing to the cost of acquiring such data. Realizing that object detection methods for the RGB modality are quite robust (at least for some commonplace classes, like person, car, etc.), thanks to the giant training sets that exist, in this work we seek to leverage cues from the RGB modality to scale object detectors to the IR modality, while preserving model performance in the RGB modality. At the core of our method, is a novel tensor decomposition method called TensorFact which splits the convolution kernels of a layer of a Convolutional Neural Network (CNN) into low-rank factor matrices, with fewer parameters than the original CNN. We first pretrain these factor matrices on the RGB modality, for which plenty of training data are assumed to exist and then augment only a few trainable parameters for training on the IR modality to avoid over-fitting, while encouraging them to capture complementary cues from those trained only on the RGB modality. We validate our approach empirically by first assessing how well our TensorFact decomposed network performs at the task of detecting objects in RGB images vis-a-vis the original network and then look at how well it adapts to IR images of the FLIR ADAS v1 dataset. For the latter, we train models under scenarios that pose challenges stemming from data paucity. From the experiments, we observe that: (i) TensorFact shows performance gains on RGB images; (ii) further, this pre-trained model, when fine-tuned, outperforms a standard state-of-the-art object detector on the FLIR ADAS v1 dataset by about 4% in terms of mAP 50 score.

We propose a modular pipeline for the single-channel separation, recognition, and diarization of meeting-style recordings and evaluate it on the Libri-CSS dataset. Using a Continuous Speech Separation (CSS) system with a TF-GridNet separation architecture, followed by a speaker-agnostic speech recognizer, we achieve state-of-the-art recognition performance in terms of Optimal Reference Combination Word Error Rate (ORC WER). Then, a d-vector-based diarization module is employed to extract speaker embeddings from the enhanced signals and to assign the CSS outputs to the correct speaker. Here, we propose a syntactically informed diarization using sentence- and word-level boundaries of the ASR module to support speaker turn detection. This results in a state-of-the-art Concatenated minimum-Permutation Word Error Rate (cpWER) for the full meeting recognition pipeline.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

Recommender System (RS) is a hot area where artificial intelligence (AI) techniques can be effectively applied to improve performance. Since the well-known Netflix Challenge, collaborative filtering (CF) has become the most popular and effective recommendation method. Despite their success in CF, various AI techniques still have to face the data sparsity and cold start problems. Previous works tried to solve these two problems by utilizing auxiliary information, such as social connections among users and meta-data of items. However, they process different types of information separately, leading to information loss. In this work, we propose to utilize Heterogeneous Information Network (HIN), which is a natural and general representation of different types of data, to enhance CF-based recommending methods. HIN-based recommender systems face two problems: how to represent high-level semantics for recommendation and how to fuse the heterogeneous information to recommend. To address these problems, we propose to applying meta-graph to HIN-based RS and solve the information fusion problem with a "matrix factorization (MF) + factorization machine (FM)" framework. For the "MF" part, we obtain user-item similarity matrices from each meta-graph and adopt low-rank matrix approximation to get latent features for both users and items. For the "FM" part, we propose to apply FM with Group lasso (FMG) on the obtained features to simultaneously predict missing ratings and select useful meta-graphs. Experimental results on two large real-world datasets, i.e., Amazon and Yelp, show that our proposed approach is better than that of the state-of-the-art FM and other HIN-based recommending methods.

北京阿比特科技有限公司