We present some algorithms that provide useful topological information about curves in surfaces. One of the main algorithms computes the geometric intersection number of two properly embedded 1-manifolds $C_1$ and $C_2$ in a compact orientable surface $S$. The surface $S$ is presented via a triangulation or a handle structure, and the 1-manifolds are given in normal form via their normal coordinates. The running time is bounded above by a polynomial function of the number of triangles in the triangulation (or the number of handles in the handle structure), and the logarithm of the weight of $C_1$ and $C_2$. This algorithm represents an improvement over previous work, since its running time depends polynomially on the size of the triangulation of $S$ and it can deal with closed surfaces, unlike many earlier algorithms. Another algorithm, with similar bounds on its running time, can determine whether $C_1$ and $C_2$ are isotopic. We also present a closely related algorithm that can be used to place a standard 1-manifold into normal form.
Maximum entropy (Maxent) models are a class of statistical models that use the maximum entropy principle to estimate probability distributions from data. Due to the size of modern data sets, Maxent models need efficient optimization algorithms to scale well for big data applications. State-of-the-art algorithms for Maxent models, however, were not originally designed to handle big data sets; these algorithms either rely on technical devices that may yield unreliable numerical results, scale poorly, or require smoothness assumptions that many practical Maxent models lack. In this paper, we present novel optimization algorithms that overcome the shortcomings of state-of-the-art algorithms for training large-scale, non-smooth Maxent models. Our proposed first-order algorithms leverage the Kullback-Leibler divergence to train large-scale and non-smooth Maxent models efficiently. For Maxent models with discrete probability distribution of $n$ elements built from samples, each containing $m$ features, the stepsize parameters estimation and iterations in our algorithms scale on the order of $O(mn)$ operations and can be trivially parallelized. Moreover, the strong $\ell_{1}$ convexity of the Kullback--Leibler divergence allows for larger stepsize parameters, thereby speeding up the convergence rate of our algorithms. To illustrate the efficiency of our novel algorithms, we consider the problem of estimating probabilities of fire occurrences as a function of ecological features in the Western US MTBS-Interagency wildfire data set. Our numerical results show that our algorithms outperform the state of the arts by one order of magnitude and yield results that agree with physical models of wildfire occurrence and previous statistical analyses of wildfire drivers.
In decision-making, maxitive functions are used for worst-case and best-case evaluations. Maxitivity gives rise to a rich structure that is well-studied in the context of the pointwise order. In this article, we investigate maxitivity with respect to general preorders and provide a representation theorem for such functionals. The results are illustrated for different stochastic orders in the literature, including the usual stochastic order, the increasing convex/concave order, and the dispersive order.
Negation is a important perspective of knowledge representation. Existing negation methods are mainly applied in probability theory, evidence theory and complex evidence theory. As a generalization of evidence theory, random permutation sets theory may represent information more precisely. However, how to apply the concept of negation to random permutation sets theory has not been studied. In this paper, the negation of permutation mass function is proposed. Moreover, in the negation process, the convergence of proposed negation method is verified. The trends of uncertainty and dissimilarity after each negation operation are investigated. Numerical examples are used to demonstrate the rationality of the proposed method.
The worst-case complexity of group-theoretic algorithms has been studied for a long time. Generic-case complexity, or complexity on random inputs, was introduced and studied relatively recently. In this paper, we address the average-case time complexity of the word problem in several classes of groups and show that it is often the case that the average-case complexity is linear with respect to the length of an input word. The classes of groups that we consider include groups of matrices over rationals (in particular, polycyclic groups), some classes of solvable groups, as well as free products. Along the way, we improve several bounds for the worst-case complexity of the word problem in groups of matrices, in particular in nilpotent groups. For free products, we also address the average-case complexity of the subgroup membership problem and show that it is often linear, too. Finally, we discuss complexity of the identity problem that has not been considered before.
The family of bent functions is a known class of Boolean functions, which have a great importance in cryptography. The Cayley graph defined on $\mathbb{Z}_{2}^{n}$ by the support of a bent function is a strongly regular graph $srg(v,k\lambda,\mu)$, with $\lambda=\mu$. In this note we list the parameters of such Cayley graphs. Moreover, it is given a condition on $(n,m)$-bent functions $F=(f_1,\ldots,f_m)$, involving the support of their components $f_i$, and their $n$-ary symmetric differences.
Mendelian randomization is an instrumental variable method that utilizes genetic information to investigate the causal effect of a modifiable exposure on an outcome. In most cases, the exposure changes over time. Understanding the time-varying causal effect of the exposure can yield detailed insights into mechanistic effects and the potential impact of public health interventions. Recently, a growing number of Mendelian randomization studies have attempted to explore time-varying causal effects. However, the proposed approaches oversimplify temporal information and rely on overly restrictive structural assumptions, limiting their reliability in addressing time-varying causal problems. This paper considers a novel approach to estimate time-varying effects through continuous-time modelling by combining functional principal component analysis and weak-instrument-robust techniques. Our method effectively utilizes available data without making strong structural assumptions and can be applied in general settings where the exposure measurements occur at different timepoints for different individuals. We demonstrate through simulations that our proposed method performs well in estimating time-varying effects and provides reliable inference results when the time-varying effect form is correctly specified. The method could theoretically be used to estimate arbitrarily complex time-varying effects. However, there is a trade-off between model complexity and instrument strength. Estimating complex time-varying effects requires instruments that are unrealistically strong. We illustrate the application of this method in a case study examining the time-varying effects of systolic blood pressure on urea levels.
This work proposes a discretization of the acoustic wave equation with possibly oscillatory coefficients based on a superposition of discrete solutions to spatially localized subproblems computed with an implicit time discretization. Based on exponentially decaying entries of the global system matrices and an appropriate partition of unity, it is proved that the superposition of localized solutions is appropriately close to the solution of the (global) implicit scheme. It is thereby justified that the localized (and especially parallel) computation on multiple overlapping subdomains is reasonable. Moreover, a re-start is introduced after a certain amount of time steps to maintain a moderate overlap of the subdomains. Overall, the approach may be understood as a domain decomposition strategy in space on successive short time intervals that completely avoids inner iterations. Numerical examples are presented.
Belnap-Dunn logic, also knows as the logic of First-Degree Entailment, is a logic that can serve as the underlying logic of theories that are inconsistent or incomplete. For various reasons, different expansions of Belnap-Dunn logic with non-classical connectives have been studied. This paper investigates the question whether those expansions are interdefinable with an expansion whose connectives include only classical connectives. This is worth knowing because it is difficult to say how close a logic with non-classical connectives is related to classical logic. The notion of interdefinability of logics used is based on a general notion of definability of a connective in a logic that seems to have been forgotten.
One of the main challenges for interpreting black-box models is the ability to uniquely decompose square-integrable functions of non-independent random inputs into a sum of functions of every possible subset of variables. However, dealing with dependencies among inputs can be complicated. We propose a novel framework to study this problem, linking three domains of mathematics: probability theory, functional analysis, and combinatorics. We show that, under two reasonable assumptions on the inputs (non-perfect functional dependence and non-degenerate stochastic dependence), it is always possible to decompose such a function uniquely. This generalizes the well-known Hoeffding decomposition. The elements of this decomposition can be expressed using oblique projections and allow for novel interpretability indices for evaluation and variance decomposition purposes. The properties of these novel indices are studied and discussed. This generalization offers a path towards a more precise uncertainty quantification, which can benefit sensitivity analysis and interpretability studies whenever the inputs are dependent. This decomposition is illustrated analytically, and the challenges for adopting these results in practice are discussed.
The minimum covariance determinant (MCD) estimator is a popular method for robustly estimating the mean and covariance of multivariate data. We extend the MCD to the setting where the observations are matrices rather than vectors and introduce the matrix minimum covariance determinant (MMCD) estimators for robust parameter estimation. These estimators hold equivariance properties, achieve a high breakdown point, and are consistent under elliptical matrix-variate distributions. We have also developed an efficient algorithm with convergence guarantees to compute the MMCD estimators. Using the MMCD estimators, we can compute robust Mahalanobis distances that can be used for outlier detection. Those distances can be decomposed into outlyingness contributions from each cell, row, or column of a matrix-variate observation using Shapley values, a concept for outlier explanation recently introduced in the multivariate setting. Simulations and examples reveal the excellent properties and usefulness of the robust estimators.