亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Orbifolds are a modern mathematical concept that arises in the research of hyperbolic geometry with applications in computer graphics and visualization. In this paper, we make use of rooms with mirrors as the visual metaphor for orbifolds. Given any arbitrary two-dimensional kaleidoscopic orbifold, we provide an algorithm to construct a Euclidean, spherical, or hyperbolic polygon to match the orbifold. This polygon is then used to create a room for which the polygon serves as the floor and the ceiling. With our system that implements M\"obius transformations, the user can interactively edit the scene and see the reflections of the edited objects. To correctly visualize non-Euclidean orbifolds, we adapt the rendering algorithms to account for the geodesics in these spaces, which light rays follow. Our interactive orbifold design system allows the user to create arbitrary two-dimensional kaleidoscopic orbifolds. In addition, our mirror-based orbifold visualization approach has the potential of helping our users gain insight on the orbifold, including its orbifold notation as well as its universal cover, which can also be the spherical space and the hyperbolic space.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 原點 · ENJOY · 線性的 · 準則 ·
2023 年 10 月 20 日

Pomset logic and BV are both logics that extend multiplicative linear logic (with Mix) with a third connective that is self-dual and non-commutative. Whereas pomset logic originates from the study of coherence spaces and proof nets, BV originates from the study of series-parallel orders, cographs, and proof systems. Both logics enjoy a cut-admissibility result, but for neither logic can this be done in the sequent calculus. Provability in pomset logic can be checked via a proof net correctness criterion and in BV via a deep inference proof system. It has long been conjectured that these two logics are the same. In this paper we show that this conjecture is false. We also investigate the complexity of the two logics, exhibiting a huge gap between the two. Whereas provability in BV is NP-complete, provability in pomset logic is $\Sigma_2^p$-complete. We also make some observations with respect to possible sequent systems for the two logics.

We propose a novel non-negative spherical relaxation for optimization problems over binary matrices with injectivity constraints, which in particular has applications in multi-matching and clustering. We relax respective binary matrix constraints to the (high-dimensional) non-negative sphere. To optimize our relaxed problem, we use a conditional power iteration method to iteratively improve the objective function, while at same time sweeping over a continuous scalar parameter that is (indirectly) related to the universe size (or number of clusters). Opposed to existing procedures that require to fix the integer universe size before optimization, our method automatically adjusts the analogous continuous parameter. Furthermore, while our approach shares similarities with spectral multi-matching and spectral clustering, our formulation has the strong advantage that we do not rely on additional post-processing procedures to obtain binary results. Our method shows compelling results in various multi-matching and clustering settings, even when compared to methods that use the ground truth universe size (or number of clusters).

Among the wide variety of evolutionary computing models, Finite State Machines (FSMs) have several attractions for fundamental research. They are easy to understand in concept and can be visualised clearly in simple cases. They have a ready fitness criterion through their relationship with Regular Languages. They have also been shown to be tractably evolvable, even up to exhibiting evidence of open-ended evolution in specific scenarios. In addition to theoretical attraction, they also have industrial applications, as a paradigm of both automated and user-initiated control. Improving the understanding of the factors affecting FSM evolution has relevance to both computer science and practical optimisation of control. We investigate an evolutionary scenario of FSMs adapting to recognise one of a family of Regular Languages by categorising positive and negative samples, while also being under a counteracting selection pressure that favours fewer states. The results appear to indicate that longer strings provided as samples reduce the speed of fitness gain, when fitness is measured against a fixed number of sample strings. We draw the inference that additional information from longer strings is not sufficient to compensate for sparser coverage of the combinatorial space of positive and negative sample strings.

Within the realm of deep learning, the interpretability of Convolutional Neural Networks (CNNs), particularly in the context of image classification tasks, remains a formidable challenge. To this end we present a neurosymbolic framework, NeSyFOLD-G that generates a symbolic rule-set using the last layer kernels of the CNN to make its underlying knowledge interpretable. What makes NeSyFOLD-G different from other similar frameworks is that we first find groups of similar kernels in the CNN (kernel-grouping) using the cosine-similarity between the feature maps generated by various kernels. Once such kernel groups are found, we binarize each kernel group's output in the CNN and use it to generate a binarization table which serves as input data to FOLD-SE-M which is a Rule Based Machine Learning (RBML) algorithm. FOLD-SE-M then generates a rule-set that can be used to make predictions. We present a novel kernel grouping algorithm and show that grouping similar kernels leads to a significant reduction in the size of the rule-set generated by FOLD-SE-M, consequently, improving the interpretability. This rule-set symbolically encapsulates the connectionist knowledge of the trained CNN. The rule-set can be viewed as a normal logic program wherein each predicate's truth value depends on a kernel group in the CNN. Each predicate in the rule-set is mapped to a concept using a few semantic segmentation masks of the images used for training, to make it human-understandable. The last layers of the CNN can then be replaced by this rule-set to obtain the NeSy-G model which can then be used for the image classification task. The goal directed ASP system s(CASP) can be used to obtain the justification of any prediction made using the NeSy-G model. We also propose a novel algorithm for labeling each predicate in the rule-set with the semantic concept(s) that its corresponding kernel group represents.

We consider rather a general class of multi-level optimization problems, where a convex objective function is to be minimized subject to constraints of optimality of nested convex optimization problems. As a special case, we consider a trilevel optimization problem, where the objective of the two lower layers consists of a sum of a smooth and a non-smooth term.~Based on fixed-point theory and related arguments, we present a natural first-order algorithm and analyze its convergence and rates of convergence in several regimes of parameters.

Pretrained language models are expected to effectively map input text to a set of vectors while preserving the inherent relationships within the text. Consequently, designing a white-box model to compute metrics that reflect the presence of specific internal relations in these vectors has become a common approach for post-hoc interpretability analysis of pretrained language models. However, achieving interpretability in white-box models and ensuring the rigor of metric computation becomes challenging when the source model lacks inherent interpretability. Therefore, in this paper, we discuss striking a balance in this trade-off and propose a novel line to constructing metrics for understanding the mechanisms of pretrained language models. We have specifically designed a family of metrics along this line of investigation, and the model used to compute these metrics is referred to as the tree topological probe. We conducted measurements on BERT-large by using these metrics. Based on the experimental results, we propose a speculation regarding the working mechanism of BERT-like pretrained language models, as well as a strategy for enhancing fine-tuning performance by leveraging the topological probe to improve specific submodules.

Adiabatic quantum computing (AQC) is a promising quantum computing approach for discrete and often NP-hard optimization problems. Current AQCs allow to implement problems of research interest, which has sparked the development of quantum representations for many machine learning and computer vision tasks. Despite requiring multiple measurements from the noisy AQC, current approaches only utilize the best measurement, discarding information contained in the remaining ones. In this work, we explore the potential of using this information for probabilistic balanced k-means clustering. Instead of discarding non-optimal solutions, we propose to use them to compute calibrated posterior probabilities with little additional compute cost. This allows us to identify ambiguous solutions and data points, which we demonstrate on a D-Wave AQC on synthetic and real data.

The mathematical theory of a novel variational approximation scheme for general second and fourth order partial differential equations \begin{equation}\label{eq: A} \partial_t u - \nabla\cdot\Big(u\nabla\frac{\delta\phi}{\delta u}(u)\Big|\nabla\frac{\delta\phi}{\delta u}(u)\Big|^{q-2}\Big) \ = \ 0, \quad\quad u\geq0, \end{equation} $q\in(1, +\infty)$, is developed.

A classical problem of statistical inference is the valid specification of a model that can account for the statistical dependencies between observations when the true structure is dense, intractable, or unknown. To address this problem, a new variance identity is presented, which is closely related to the Moulton factor. This identity does not require the specification of an entire covariance structure and instead relies on the choice of two summary constants. Using this result, a weak law of large numbers is also established for additive statistics and common variance estimators under very general conditions of statistical dependence. Furthermore, this paper proves a sharper version of Hoeffding's inequality for symmetric and bounded random variables under these same conditions of statistical dependence. Put otherwise, it is shown that, under relatively mild conditions, finite sample inference is possible in common settings such as linear regression, and even when every outcome variable is statistically dependent with all others. All results are extended to estimating equations. Simulation experiments and an application to climate data are also provided.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

北京阿比特科技有限公司