Pretrained language models (PLMs) are trained on massive corpora, but often need to specialize to specific domains. A parameter-efficient adaptation method suggests training an adapter for each domain on the task of language modeling. This leads to good in-domain scores but can be impractical for domain- or resource-restricted settings. A solution is to use a related-domain adapter for the novel domain at test time. In this paper, we introduce AdapterSoup, an approach that performs weight-space averaging of adapters trained on different domains. Our approach is embarrassingly parallel: first, we train a set of domain-specific adapters; then, for each novel domain, we determine which adapters should be averaged at test time. We present extensive experiments showing that AdapterSoup consistently improves performance to new domains without extra training. We also explore weight averaging of adapters trained on the same domain with different hyper-parameters, and show that it preserves the performance of a PLM on new domains while obtaining strong in-domain results. We explore various approaches for choosing which adapters to combine, such as text clustering and semantic similarity. We find that using clustering leads to the most competitive results on novel domains.
A key challenge in machine learning is to generalize from training data to an application domain of interest. This work generalizes the recently-proposed mixture invariant training (MixIT) algorithm to perform unsupervised learning in the multi-channel setting. We use MixIT to train a model on far-field microphone array recordings of overlapping reverberant and noisy speech from the AMI Corpus. The models are trained on both supervised and unsupervised training data, and are tested on real AMI recordings containing overlapping speech. To objectively evaluate our models, we also use a synthetic multi-channel AMI test set. Holding network architectures constant, we find that a fine-tuned semi-supervised model yields the largest improvement to SI-SNR and to human listening ratings across synthetic and real datasets, outperforming supervised models trained on well-matched synthetic data. Our results demonstrate that unsupervised learning through MixIT enables model adaptation on both single- and multi-channel real-world speech recordings.
Foundation models (e.g., CLIP or DINOv2) have shown their impressive learning and transferring capabilities on a wide range of visual tasks, by training on a large corpus of data and adapting to specific downstream tasks. It is, however, interesting that foundation models have not been fully explored for universal domain adaptation (UniDA), which is to learn models using labeled data in a source domain and unlabeled data in a target one, such that the learned models can successfully adapt to the target data. In this paper, we make comprehensive empirical studies of state-of-the-art UniDA methods using foundation models. We first demonstrate that, while foundation models greatly improve the performance of the baseline methods that train the models on the source data alone, existing UniDA methods generally fail to improve over the baseline. This suggests that new research efforts are very necessary for UniDA using foundation models. To this end, we propose a very simple method of target data distillation on the CLIP model, and achieves consistent improvement over the baseline across all the UniDA benchmarks. Our studies are under a newly proposed evaluation metric of universal classification rate (UCR), which is threshold- and ratio-free and addresses the threshold-sensitive issue encountered when using the existing H-score metric.
Dense retrieval has shown promise in the first-stage retrieval process when trained on in-domain labeled datasets. However, previous studies have found that dense retrieval is hard to generalize to unseen domains due to its weak modeling of domain-invariant and interpretable feature (i.e., matching signal between two texts, which is the essence of information retrieval). In this paper, we propose a novel method to improve the generalization of dense retrieval via capturing matching signal called BERM. Fully fine-grained expression and query-oriented saliency are two properties of the matching signal. Thus, in BERM, a single passage is segmented into multiple units and two unit-level requirements are proposed for representation as the constraint in training to obtain the effective matching signal. One is semantic unit balance and the other is essential matching unit extractability. Unit-level view and balanced semantics make representation express the text in a fine-grained manner. Essential matching unit extractability makes passage representation sensitive to the given query to extract the pure matching information from the passage containing complex context. Experiments on BEIR show that our method can be effectively combined with different dense retrieval training methods (vanilla, hard negatives mining and knowledge distillation) to improve its generalization ability without any additional inference overhead and target domain data.
Zero-shot sketch-based image retrieval (ZS-SBIR) is challenging due to the cross-domain nature of sketches and photos, as well as the semantic gap between seen and unseen image distributions. Previous methods fine-tune pre-trained models with various side information and learning strategies to learn a compact feature space that is shared between the sketch and photo domains and bridges seen and unseen classes. However, these efforts are inadequate in adapting domains and transferring knowledge from seen to unseen classes. In this paper, we present an effective ``Adapt and Align'' approach to address the key challenges. Specifically, we insert simple and lightweight domain adapters to learn new abstract concepts of the sketch domain and improve cross-domain representation capabilities. Inspired by recent advances in image-text foundation models (e.g., CLIP) on zero-shot scenarios, we explicitly align the learned image embedding with a more semantic text embedding to achieve the desired knowledge transfer from seen to unseen classes. Extensive experiments on three benchmark datasets and two popular backbones demonstrate the superiority of our method in terms of retrieval accuracy and flexibility.
Language models (LMs) trained on vast quantities of unlabelled data have greatly advanced the field of natural language processing (NLP). In this study, we re-visit the widely accepted notion in NLP that continued pre-training LMs on task-related texts improves the performance of fine-tuning (FT) in downstream tasks. Through experiments on eight single-sentence tasks and eight sentence-pair tasks in both semi-supervised and fully-supervised settings, we find that conventional continued pre-training does not consistently provide benefits and can even be detrimental for sentence-pair tasks or when prompt-based FT is used. To tackle these issues, we propose Prompt-based Continued Pre-training (PCP), which combines the idea of instruction tuning with conventional continued pre-training. Our approach aims to improve the performance of prompt-based FT by presenting both task-related texts and prompt templates to LMs through unsupervised pre-training objectives before fine-tuning for the target task. Our empirical evaluations on 21 benchmarks demonstrate that the PCP consistently improves the performance of state-of-the-art prompt-based FT approaches (up to 20.1% absolute) in both semi-supervised and fully-supervised settings, even with only hundreds of unlabelled examples. Additionally, prompt-based FT with the PCP outperforms state-of-the-art semi-supervised approaches with greater simplicity, eliminating the need for an iterative process and extra data augmentation. Our further analysis explores the performance lower bound of the PCP and reveals that the advantages of PCP persist across different sizes of models and datasets.
Learning effective sentence representations is crucial for many Natural Language Processing (NLP) tasks, including semantic search, semantic textual similarity (STS), and clustering. While multiple transformer models have been developed for sentence embedding learning, these models may not perform optimally when dealing with specialized domains like aviation, which has unique characteristics such as technical jargon, abbreviations, and unconventional grammar. Furthermore, the absence of labeled datasets makes it difficult to train models specifically for the aviation domain. To address these challenges, we propose a novel approach for adapting sentence transformers for the aviation domain. Our method is a two-stage process consisting of pre-training followed by fine-tuning. During pre-training, we use Transformers and Sequential Denoising AutoEncoder (TSDAE) with aviation text data as input to improve the initial model performance. Subsequently, we fine-tune our models using a Natural Language Inference (NLI) dataset in the Sentence Bidirectional Encoder Representations from Transformers (SBERT) architecture to mitigate overfitting issues. Experimental results on several downstream tasks show that our adapted sentence transformers significantly outperform general-purpose transformers, demonstrating the effectiveness of our approach in capturing the nuances of the aviation domain. Overall, our work highlights the importance of domain-specific adaptation in developing high-quality NLP solutions for specialized industries like aviation.
Knowledge Distillation (KD) is a predominant approach for BERT compression. Previous KD-based methods focus on designing extra alignment losses for the student model to mimic the behavior of the teacher model. These methods transfer the knowledge in an indirect way. In this paper, we propose a novel Weight-Inherited Distillation (WID), which directly transfers knowledge from the teacher. WID does not require any additional alignment loss and trains a compact student by inheriting the weights, showing a new perspective of knowledge distillation. Specifically, we design the row compactors and column compactors as mappings and then compress the weights via structural re-parameterization. Experimental results on the GLUE and SQuAD benchmarks show that WID outperforms previous state-of-the-art KD-based baselines. Further analysis indicates that WID can also learn the attention patterns from the teacher model without any alignment loss on attention distributions.
Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.
Pre-training text representations has recently been shown to significantly improve the state-of-the-art in many natural language processing tasks. The central goal of pre-training is to learn text representations that are useful for subsequent tasks. However, existing approaches are optimized by minimizing a proxy objective, such as the negative log likelihood of language modeling. In this work, we introduce a learning algorithm which directly optimizes model's ability to learn text representations for effective learning of downstream tasks. We show that there is an intrinsic connection between multi-task pre-training and model-agnostic meta-learning with a sequence of meta-train steps. The standard multi-task learning objective adopted in BERT is a special case of our learning algorithm where the depth of meta-train is zero. We study the problem in two settings: unsupervised pre-training and supervised pre-training with different pre-training objects to verify the generality of our approach.Experimental results show that our algorithm brings improvements and learns better initializations for a variety of downstream tasks.
The notion of "in-domain data" in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision -- suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.