亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We design the first subexponential-time (parameterized) algorithms for several cut and cycle-hitting problems on $H$-minor free graphs. In particular, we obtain the following results (where $k$ is the solution-size parameter). 1. $2^{O(\sqrt{k}\log k)} \cdot n^{O(1)}$ time algorithms for Edge Bipartization and Odd Cycle Transversal; 2. a $2^{O(\sqrt{k}\log^4 k)} \cdot n^{O(1)}$ time algorithm for Edge Multiway Cut and a $2^{O(r \sqrt{k} \log k)} \cdot n^{O(1)}$ time algorithm for Vertex Multiway Cut, where $r$ is the number of terminals to be separated; 3. a $2^{O((r+\sqrt{k})\log^4 (rk))} \cdot n^{O(1)}$ time algorithm for Edge Multicut and a $2^{O((\sqrt{rk}+r) \log (rk))} \cdot n^{O(1)}$ time algorithm for Vertex Multicut, where $r$ is the number of terminal pairs to be separated; 4. a $2^{O(\sqrt{k} \log g \log^4 k)} \cdot n^{O(1)}$ time algorithm for Group Feedback Edge Set and a $2^{O(g \sqrt{k}\log(gk))} \cdot n^{O(1)}$ time algorithm for Group Feedback Vertex Set, where $g$ is the size of the group. 5. In addition, our approach also gives $n^{O(\sqrt{k})}$ time algorithms for all above problems with the exception of $n^{O(r+\sqrt{k})}$ time for Edge/Vertex Multicut and $(ng)^{O(\sqrt{k})}$ time for Group Feedback Edge/Vertex Set. We obtain our results by giving a new decomposition theorem on graphs of bounded genus, or more generally, an $h$-almost-embeddable graph for any fixed constant $h$. In particular we show the following. Let $G$ be an $h$-almost-embeddable graph for a constant $h$. Then for every $p\in\mathbb{N}$, there exist disjoint sets $Z_1,\dots,Z_p \subseteq V(G)$ such that for every $i \in \{1,\dots,p\}$ and every $Z'\subseteq Z_i$, the treewidth of $G/(Z_i\backslash Z')$ is $O(p+|Z'|)$. Here $G/(Z_i\backslash Z')$ is the graph obtained from $G$ by contracting edges with both endpoints in $Z_i \backslash Z'$.

相關內容

We compare the performance of several variations of the Quantum Alternating Operator Ansatz (QAOA) on constrained optimization problems. Specifically, we study the Clique, Ring, and Grover mixers as well as the traditional objective value and recently introduced threshold-based phase separators. These are studied through numerical simulation on k-Densest Subgraph, Maximum k-Vertex Cover, and Maximum Bisection problems of size up to n=18 on Erd\"os-Renyi graphs. We show that only one of these QAOA variations, the Clique mixer with objective value phase separator, outperforms Grover-style unstructured search, with a potentially super-polynomial advantage.

A long line of research on fixed parameter tractability of integer programming culminated with showing that integer programs with n variables and a constraint matrix with dual tree-depth d and largest entry D are solvable in time g(d,D)poly(n) for some function g. However, the dual tree-depth of a constraint matrix is not preserved by row operations, i.e., a given integer program can be equivalent to another with a smaller dual tree-depth, and thus does not reflect its geometric structure. We prove that the minimum dual tree-depth of a row-equivalent matrix is equal to the branch-depth of the matroid defined by the columns of the matrix. We design a fixed parameter algorithm for computing branch-depth of matroids represented over a finite field and a fixed parameter algorithm for computing a row-equivalent matrix with minimum dual tree-depth. Finally, we use these results to obtain an algorithm for integer programming running in time g(d*,D)poly(n) where d* is the branch-depth of the constraint matrix; the branch-depth cannot be replaced by the more permissive notion of branch-width.

The classic algorithm of Bodlaender and Kloks [J. Algorithms, 1996] solves the following problem in linear fixed-parameter time: given a tree decomposition of a graph of (possibly suboptimal) width k, compute an optimum-width tree decomposition of the graph. In this work, we prove that this problem can also be solved in mso in the following sense: for every positive integer k, there is an mso transduction from tree decompositions of width k to tree decompositions of optimum width. Together with our recent results [LICS 2016], this implies that for every k there exists an mso transduction which inputs a graph of treewidth k, and nondeterministically outputs its tree decomposition of optimum width. We also show that mso transductions can be implemented in linear fixed-parameter time, which enables us to derive the algorithmic result of Bodlaender and Kloks as a corollary of our main result.

We consider edge modification problems towards block and strictly chordal graphs, where one is given an undirected graph $G = (V,E)$ and an integer $k \in \mathbb{N}$ and seeks to edit (add or delete) at most $k$ edges from $G$ to obtain a block graph or a strictly chordal graph. The completion and deletion variants of these problems are defined similarly by only allowing edge additions for the former and only edge deletions for the latter. Block graphs are a well-studied class of graphs and admit several characterizations, e.g. they are diamond-free chordal graphs. Strictly chordal graphs, also referred to as block duplicate graphs, are a natural generalization of block graphs where one can add true twins of cut-vertices. Strictly chordal graphs are exactly dart and gem-free chordal graphs. We prove the NP-completeness for most variants of these problems and provide $O(k^2)$ vertex-kernels for Block Graph Edition and Block Graph Deletion, $O(k^3)$ vertex-kernels for Strictly Chordal Completion and Strictly Chordal Deletion and a $O(k^4)$ vertex-kernel for Strictly Chordal Edition.

In this paper, we show several parameterized problems to be complete for the class XNLP: parameterized problems that can be solved with a non-deterministic algorithm that uses $f(k)\log n$ space and $f(k)n^c$ time, with $f$ a computable function, $n$ the input size, $k$ the parameter and $c$ a constant. The problems include Maximum Regular Induced Subgraph and Max Cut parameterized by linear clique-width, Capacitated (Red-Blue) Dominating Set parameterized by pathwidth, Odd Cycle Transversal parameterized by a new parameter we call logarithmic linear clique-width (defined as $k/\log n$ for an $n$-vertex graph of linear clique-width $k$), and Bipartite Bandwidth.

We present an algorithm for the maximum matching problem in dynamic (insertion-deletions) streams with *asymptotically optimal* space complexity: for any $n$-vertex graph, our algorithm with high probability outputs an $\alpha$-approximate matching in a single pass using $O(n^2/\alpha^3)$ bits of space. A long line of work on the dynamic streaming matching problem has reduced the gap between space upper and lower bounds first to $n^{o(1)}$ factors [Assadi-Khanna-Li-Yaroslavtsev; SODA 2016] and subsequently to $\text{polylog}{(n)}$ factors [Dark-Konrad; CCC 2020]. Our upper bound now matches the Dark-Konrad lower bound up to $O(1)$ factors, thus completing this research direction. Our approach consists of two main steps: we first (provably) identify a family of graphs, similar to the instances used in prior work to establish the lower bounds for this problem, as the only "hard" instances to focus on. These graphs include an induced subgraph which is both sparse and contains a large matching. We then design a dynamic streaming algorithm for this family of graphs which is more efficient than prior work. The key to this efficiency is a novel sketching method, which bypasses the typical loss of $\text{polylog}{(n)}$-factors in space compared to standard $L_0$-sampling primitives, and can be of independent interest in designing optimal algorithms for other streaming problems.

A family of sets is $(p,q)$-intersecting if every nonempty subfamily of $p$ or fewer sets has at least $q$ elements in its total intersection. A family of sets has the $(p,q)$-Helly property if every nonempty $(p,q)$-intersecting subfamily has total intersection of cardinality at least $q$. The $(2,1)$-Helly property is the usual Helly property. A hypergraph is $(p,q)$-Helly if its edge family has the $(p,q)$-Helly property and hereditary $(p,q)$-Helly if each of its subhypergraphs has the $(p,q)$-Helly property. A graph is $(p,q)$-clique-Helly if the family of its maximal cliques has the $(p,q)$-the Helly property and hereditary $(p,q)$-clique-Helly if each of its induced subgraphs is $(p,q)$-clique-Helly. The classes of $(p,q)$-biclique-Helly and hereditary $(p,q)$-biclique-Helly graphs are defined analogously. We prove several characterizations of hereditary $(p,q)$-Helly hypergraphs, including one by minimal forbidden partial subhypergraphs. We give an improved time bound for the recognition of $(p,q)$-Helly hypergraphs for each fixed $q$ and show that the recognition of hereditary $(p,q)$-Helly hypergraphs can be solved in polynomial time if $p$ and $q$ are fixed but co-NP-complete if $p$ is part of the input. In addition, we generalize to $(p,q)$-clique-Helly graphs the characterization of $p$-clique-Helly graphs in terms of expansions and give different characterizations of hereditary $(p,q)$-clique-Helly graphs, including one by forbidden induced subgraphs. We give an improvement on the time bound for the recognition of $(p,q)$-clique-Helly graphs and prove that the recognition problem of hereditary $(p,q)$-clique-Helly graphs is polynomial-time solvable for $p$ and $q$ fixed but NP-hard if $p$ or $q$ is part of the input. Finally, we provide different characterizations, give recognition algorithms, and prove hardness results for (hereditary) $(p,q)$-biclique-Helly graphs.

The $p$-center problem (pCP) is a fundamental problem in location science, where we are given customer demand points and possible facility locations, and we want to choose $p$ of these locations to open a facility such that the maximum distance of any customer demand point to its closest open facility is minimized. State-of-the-art solution approaches of pCP use its connection to the set cover problem to solve pCP in an iterative fashion by repeatedly solving set cover problems. The classical textbook integer programming (IP) formulation of pCP is usually dismissed due to its size and bad linear programming (LP)-relaxation bounds. We present a novel solution approach that works on a new IP formulation that can be obtained by a projection from the classical formulation. The formulation is solved by means of branch-and-cut, where cuts for demand points are iteratively generated. Moreover, the formulation can be strengthened with combinatorial information to obtain a much tighter LP-relaxation. In particular, we present a novel way to use lower bound information to obtain stronger cuts. We show that the LP-relaxation bound of our strengthened formulation has the same strength as the best known bound in literature, which is based on a semi-relaxation. Finally, we also present a computational study on instances from the literature with up to more than 700000 customers and locations. Our solution algorithm is competitive with highly sophisticated set-cover-based solution algorithms, which depend on various components and parameters.

The median of a graph $G$ with weighted vertices is the set of all vertices $x$ minimizing the sum of weighted distances from $x$ to the vertices of $G$. For any integer $p\ge 2$, we characterize the graphs in which, with respect to any non-negative weights, median sets always induce connected subgraphs in the $p$th power $G^p$ of $G$. This extends some characterizations of graphs with connected medians (case $p=1$) provided by Bandelt and Chepoi (2002). The characteristic conditions can be tested in polynomial time for any $p$. We also show that several important classes of graphs in metric graph theory, including bridged graphs (and thus chordal graphs), graphs with convex balls, bucolic graphs, and bipartite absolute retracts, have $G^2$-connected medians. Extending the result of Bandelt and Chepoi that basis graphs of matroids are graphs with connected medians, we characterize the isometric subgraphs of Johnson graphs and of halved-cubes with connected medians.

We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.

北京阿比特科技有限公司