Three algorithm are proposed to evaluate volume potentials that arise in boundary element methods for elliptic PDEs. The approach is to apply a modified fast multipole method for a boundary concentrated volume mesh. If $h$ is the meshwidth of the boundary, then the volume is discretized using nearly $O(h^{-2})$ degrees of freedom, and the algorithm computes potentials in nearly $O(h^{-2})$ complexity. Here nearly means that logarithmic terms of $h$ may appear. Thus the complexity of volume potentials calculations is of the same asymptotic order as boundary potentials. For sources and potentials with sufficient regularity the parameters of the algorithm can be designed such that the error of the approximated potential converges at any specified rate $O(h^p)$. The accuracy and effectiveness of the proposed algorithms are demonstrated for potentials of the Poisson equation in three dimensions.
We address the problem of finding the optimal policy of a constrained Markov decision process (CMDP) using a gradient descent-based algorithm. Previous results have shown that a primal-dual approach can achieve an $\mathcal{O}(1/\sqrt{T})$ global convergence rate for both the optimality gap and the constraint violation. We propose a new algorithm called policy mirror descent-primal dual (PMD-PD) algorithm that can provably achieve a faster $\mathcal{O}(\log(T)/T)$ convergence rate for both the optimality gap and the constraint violation. For the primal (policy) update, the PMD-PD algorithm utilizes a modified value function and performs natural policy gradient steps, which is equivalent to a mirror descent step with appropriate regularization. For the dual update, the PMD-PD algorithm uses modified Lagrange multipliers to ensure a faster convergence rate. We also present two extensions of this approach to the settings with zero constraint violation and sample-based estimation. Experimental results demonstrate the faster convergence rate and the better performance of the PMD-PD algorithm compared with existing policy gradient-based algorithms.
Quantum Annealing (QA) is a computational framework where a quantum system's continuous evolution is used to find the global minimum of an objective function over an unstructured search space. It can be seen as a general metaheuristic for optimization problems, including NP-hard ones if we allow an exponentially large running time. While QA is widely studied from a heuristic point of view, little is known about theoretical guarantees on the quality of the solutions obtained in polynomial time. In this paper we use a technique borrowed from theoretical physics, the Lieb-Robinson (LR) bound, and develop new tools proving that short, constant time quantum annealing guarantees constant factor approximations ratios for some optimization problems when restricted to bounded degree graphs. Informally, on bounded degree graphs the LR bound allows us to retrieve a (relaxed) locality argument, through which the approximation ratio can be deduced by studying subgraphs of bounded radius. We illustrate our tools on problems MaxCut and Maximum Independent Set for cubic graphs, providing explicit approximation ratios and the runtimes needed to obtain them. Our results are of similar flavor to the well-known ones obtained in the different but related QAOA (quantum optimization algorithms) framework. Eventually, we discuss theoretical and experimental arguments for further improvements.
We consider the approximation of the inverse square root of regularly accretive operators in Hilbert spaces. The approximation is of rational type and comes from the use of the Gauss-Legendre rule applied to a special integral formulation of the problem. We derive sharp error estimates, based on the use of the numerical range, and provide some numerical experiments. For practical purposes, the finite dimensional case is also considered. In this setting, the convergence is shown to be of exponential type.
In [1], the non-linear space-time Hasegawa-Mima plasma equation is formulated as a coupled system of two linear PDE's, a solution of which is a pair (u, w). The first equation is of hyperbolic type and the second of elliptic type. Variational frames for obtaining weak solutions to the initial value Hasegawa-Mima problem with periodic boundary conditions were also derived. In a more recent work [2], a numerical approach consisting of a finite element space-domain combined with an Euler-implicit time scheme was used to discretize the coupled variational Hasegawa-Mima model. A semi-linear version of this implicit nonlinear scheme was tested for several types of initial conditions. This semi-linear scheme proved to lack efficiency for long time, which necessitates imposing a cap on the magnitude of the solution. To circumvent this difficulty, in this paper, we use Newton-type methods (Newton, Chord and an introduced Modified Newton method) to solve numerically the fully-implicit non-linear scheme. Testing these methods in FreeFEM++ indicates significant improvements as no cap needs to be imposed for long time. In the sequel, we demonstrate the validity of these methods by proving several results, in particular the convergence of the implemented methods.
Optimal-order uniform-in-time $H^1$-norm error estimates are given for semi- and full discretizations of mean curvature flow of surfaces in arbitrarily high codimension. The proposed and studied numerical method is based on a parabolic system coupling the surface flow to evolution equations for the mean curvature vector and for the orthogonal projection onto the tangent space. The algorithm uses evolving surface finite elements and linearly implicit backward difference formulae. This numerical method admits a convergence analysis in the case of finite elements of polynomial degree at least two and backward difference formulae of orders two to five. Numerical experiments in codimension 2 illustrate and complement our theoretical results.
In this paper, we analyze an operator splitting scheme of the nonlinear heat equation in $\Omega\subset\mathbb{R}^d$ ($d\geq 1$): $\partial_t u = \Delta u + \lambda |u|^{p-1} u$ in $\Omega\times(0,\infty)$, $u=0$ in $\partial\Omega\times(0,\infty)$, $u ({\bf x},0) =\phi ({\bf x})$ in $\Omega$. where $\lambda\in\{-1,1\}$ and $\phi \in W^{1,q}(\Omega)\cap L^{\infty} (\Omega)$ with $2\leq p < \infty$ and $d(p-1)/2<q<\infty$. We establish the well-posedness of the approximation of $u$ in $L^r$-space ($r\geq q$), and furthermore, we derive its convergence rate of order $\mathcal{O}(\tau)$ for a time step $\tau>0$. Finally, we give some numerical examples to confirm the reliability of the analyzed result.
We show how probabilistic numerics can be used to convert an initial value problem into a Gauss--Markov process parametrised by the dynamics of the initial value problem. Consequently, the often difficult problem of parameter estimation in ordinary differential equations is reduced to hyperparameter estimation in Gauss--Markov regression, which tends to be considerably easier. The method's relation and benefits in comparison to classical numerical integration and gradient matching approaches is elucidated. In particular, the method can, in contrast to gradient matching, handle partial observations, and has certain routes for escaping local optima not available to classical numerical integration. Experimental results demonstrate that the method is on par or moderately better than competing approaches.
Performance of optimization on quadratic problems sensitively depends on the low-lying part of the spectrum. For large (effectively infinite-dimensional) problems, this part of the spectrum can often be naturally represented or approximated by power law distributions. In this paper we perform a systematic study of a range of classical single-step and multi-step first order optimization algorithms, with adaptive and non-adaptive, constant and non-constant learning rates: vanilla Gradient Descent, Steepest Descent, Heavy Ball, and Conjugate Gradients. For each of these, we prove that a power law spectral assumption entails a power law for convergence rate of the algorithm, with the convergence rate exponent given by a specific multiple of the spectral exponent. We establish both upper and lower bounds, showing that the results are tight. Finally, we demonstrate applications of these results to kernel learning and training of neural networks in the NTK regime.
This note describes the full approximation storage (FAS) multigrid scheme for an easy one-dimensional nonlinear boundary value problem. The problem is discretized by a simple finite element (FE) scheme. We apply both FAS V-cycles and F-cycles, with a nonlinear Gauss-Seidel smoother, to solve the resulting finite-dimensional problem. The mathematics of the FAS restriction and prolongation operators, in the FE case, are explained. A self-contained Python program implements the scheme. Optimal performance, i.e. work proportional to the number of unknowns, is demonstrated for both kinds of cycles, including convergence nearly to discretization error in a single F-cycle.
Softmax policy gradient is a popular algorithm for policy optimization in single-agent reinforcement learning, particularly since projection is not needed for each gradient update. However, in multi-agent systems, the lack of central coordination introduces significant additional difficulties in the convergence analysis. Even for a stochastic game with identical interest, there can be multiple Nash Equilibria (NEs), which disables proof techniques that rely on the existence of a unique global optimum. Moreover, the softmax parameterization introduces non-NE policies with zero gradient, making NE-seeking difficult for gradient-based algorithms. In this paper, we study the finite time convergence of decentralized softmax gradient play in a special form of game, Markov Potential Games (MPGs), which includes the identical interest game as a special case. We investigate both gradient play and natural gradient play, with and without $\log$-barrier regularization. Establishing convergence for the unregularized cases relies on an assumption that the stationary policies are isolated, and yields convergence bounds that contain a trajectory dependent constant that can be arbitrarily large. We introduce the $\log$-barrier regularization to overcome these drawbacks, with the cost of slightly worse dependence on other factors such as the action set size. An empirical study on an identical interest matrix game confirms the theoretical findings.