亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Software development is an inherently collaborative process, where various stakeholders frequently express their opinions and emotions across diverse platforms. Recognizing the sentiments conveyed in these interactions is crucial for the effective development and ongoing maintenance of software systems. Over the years, many tools have been proposed to aid in sentiment analysis, but accurately identifying the sentiments expressed in software engineering datasets remains challenging. Although fine-tuned smaller large language models (sLLMs) have shown potential in handling software engineering tasks, they struggle with the shortage of labeled data. With the emergence of bigger large language models (bLLMs), it is pertinent to investigate whether they can handle this challenge in the context of sentiment analysis for software engineering. In this work, we undertake a comprehensive empirical study using five established datasets. We assess the performance of three open-source bLLMs in both zero-shot and few-shot scenarios. Additionally, we compare them with fine-tuned sLLMs. Our experimental findings demonstrate that bLLMs exhibit state-of-the-art performance on datasets marked by limited training data and imbalanced distributions. bLLMs can also achieve excellent performance under a zero-shot setting. However, when ample training data is available or the dataset exhibits a more balanced distribution, fine-tuned sLLMs can still achieve superior results.

相關內容

Decision trees have found widespread application within the machine learning community due to their flexibility and interpretability. This paper is directed towards learning decision trees from data using a Bayesian approach, which is challenging due to the potentially enormous parameter space required to span all tree models. Several approaches have been proposed to combat this challenge, with one of the more successful being Markov chain Monte Carlo (MCMC) methods. The efficacy and efficiency of MCMC methods fundamentally rely on the quality of the so-called proposals, which is the focus of this paper. In particular, this paper investigates using a Hamiltonian Monte Carlo (HMC) approach to explore the posterior of Bayesian decision trees more efficiently by exploiting the geometry of the likelihood within a global update scheme. Two implementations of the novel algorithm are developed and compared to existing methods by testing against standard datasets in the machine learning and Bayesian decision tree literature. HMC-based methods are shown to perform favourably with respect to predictive test accuracy, acceptance rate, and tree complexity.

Language models are increasingly being deployed for general problem solving across a wide range of tasks, but are still confined to token-level, left-to-right decision-making processes during inference. This means they can fall short in tasks that require exploration, strategic lookahead, or where initial decisions play a pivotal role. To surmount these challenges, we introduce a new framework for language model inference, Tree of Thoughts (ToT), which generalizes over the popular Chain of Thought approach to prompting language models, and enables exploration over coherent units of text (thoughts) that serve as intermediate steps toward problem solving. ToT allows LMs to perform deliberate decision making by considering multiple different reasoning paths and self-evaluating choices to decide the next course of action, as well as looking ahead or backtracking when necessary to make global choices. Our experiments show that ToT significantly enhances language models' problem-solving abilities on three novel tasks requiring non-trivial planning or search: Game of 24, Creative Writing, and Mini Crosswords. For instance, in Game of 24, while GPT-4 with chain-of-thought prompting only solved 4% of tasks, our method achieved a success rate of 74%. Code repo with all prompts: //github.com/princeton-nlp/tree-of-thought-llm.

We investigate the singular value decomposition of a rectangular matrix that is analytic on the complex unit circumference, which occurs, e.g., with the matrix of transfer functions representing a broadband multiple-input multiple-output channel. Our analysis is based on the Puiseux series expansion of the eigenvalue decomposition of analytic para-Hermitian matrices on the complex unit circumference. We study the case in which the rectangular matrix does not admit a full analytic singular value factorization, either due to partly multiplexed systems or to sign ambiguity. We show how to find an SVD factorization in the ring of Puiseux series where each singular value and the associated singular vectors present the same period and multiplexing structure, and we prove that it is always possible to find an analytic pseudo-circulant factorization, meaning that any arbitrary arrangements of multiplexed systems can be converted into a parallel form. In particular, one can show that the sign ambiguity can be overcome by allowing non-real holomorphic singular values.

In the realm of interpretability and out-of-distribution generalisation, the identifiability of latent variable models has emerged as a captivating field of inquiry. In this work, we delve into the identifiability of Switching Dynamical Systems, taking an initial stride toward extending identifiability analysis to sequential latent variable models. We first prove the identifiability of Markov Switching Models, which commonly serve as the prior distribution for the continuous latent variables in Switching Dynamical Systems. We present identification conditions for first-order Markov dependency structures, whose transition distribution is parametrised via non-linear Gaussians. We then establish the identifiability of the latent variables and non-linear mappings in Switching Dynamical Systems up to affine transformations, by leveraging identifiability analysis techniques from identifiable deep latent variable models. We finally develop estimation algorithms for identifiable Switching Dynamical Systems. Throughout empirical studies, we demonstrate the practicality of identifiable Switching Dynamical Systems for segmenting high-dimensional time series such as videos, and showcase the use of identifiable Markov Switching Models for regime-dependent causal discovery in climate data.

Modeling the ratio of two dependent components as a function of covariates is a frequently pursued objective in observational research. Despite the high relevance of this topic in medical studies, where biomarker ratios are often used as surrogate endpoints for specific diseases, existing models are based on oversimplified assumptions, assuming e.g.\@ independence or strictly positive associations between the components. In this paper, we close this gap in the literature and propose a regression model where the marginal distributions of the two components are linked by Frank copula. A key feature of our model is that it allows for both positive and negative correlations between the components, with one of the model parameters being directly interpretable in terms of Kendall's rank correlation coefficient. We study our method theoretically, evaluate finite sample properties in a simulation study and demonstrate its efficacy in an application to diagnosis of Alzheimer's disease via ratios of amyloid-beta and total tau protein biomarkers.

Bug reports are an essential aspect of software development, and it is crucial to identify and resolve them quickly to ensure the consistent functioning of software systems. Retrieving similar bug reports from an existing database can help reduce the time and effort required to resolve bugs. In this paper, we compared the effectiveness of semantic textual similarity methods for retrieving similar bug reports based on a similarity score. We explored several embedding models such as TF-IDF (Baseline), FastText, Gensim, BERT, and ADA. We used the Software Defects Data containing bug reports for various software projects to evaluate the performance of these models. Our experimental results showed that BERT generally outperformed the rest of the models regarding recall, followed by ADA, Gensim, FastText, and TFIDF. Our study provides insights into the effectiveness of different embedding methods for retrieving similar bug reports and highlights the impact of selecting the appropriate one for this task. Our code is available on GitHub.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司