亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Appearance-based gaze estimation has been actively studied in recent years. However, its generalization performance for unseen head poses is still a significant limitation for existing methods. This work proposes a generalizable multi-view gaze estimation task and a cross-view feature fusion method to address this issue. In addition to paired images, our method takes the relative rotation matrix between two cameras as additional input. The proposed network learns to extract rotatable feature representation by using relative rotation as a constraint and adaptively fuses the rotatable features via stacked fusion modules. This simple yet efficient approach significantly improves generalization performance under unseen head poses without significantly increasing computational cost. The model can be trained with random combinations of cameras without fixing the positioning and can generalize to unseen camera pairs during inference. Through experiments using multiple datasets, we demonstrate the advantage of the proposed method over baseline methods, including state-of-the-art domain generalization approaches.

相關內容

Multi-view clustering (MVC), which effectively fuses information from multiple views for better performance, has received increasing attention. Most existing MVC methods assume that multi-view data are fully paired, which means that the mappings of all corresponding samples between views are pre-defined or given in advance. However, the data correspondence is often incomplete in real-world applications due to data corruption or sensor differences, referred as the data-unpaired problem (DUP) in multi-view literature. Although several attempts have been made to address the DUP issue, they suffer from the following drawbacks: 1) Most methods focus on the feature representation while ignoring the structural information of multi-view data, which is essential for clustering tasks; 2) Existing methods for partially unpaired problems rely on pre-given cross-view alignment information, resulting in their inability to handle fully unpaired problems; 3) Their inevitable parameters degrade the efficiency and applicability of the models. To tackle these issues, we propose a novel parameter-free graph clustering framework termed Unpaired Multi-view Graph Clustering framework with Cross-View Structure Matching (UPMGC-SM). Specifically, unlike the existing methods, UPMGC-SM effectively utilizes the structural information from each view to refine cross-view correspondences. Besides, our UPMGC-SM is a unified framework for both the fully and partially unpaired multi-view graph clustering. Moreover, existing graph clustering methods can adopt our UPMGC-SM to enhance their ability for unpaired scenarios. Extensive experiments demonstrate the effectiveness and generalization of our proposed framework for both paired and unpaired datasets.

Multimodal learning, particularly for pedestrian detection, has recently received emphasis due to its capability to function equally well in several critical autonomous driving scenarios such as low-light, night-time, and adverse weather conditions. However, in most cases, the training distribution largely emphasizes the contribution of one specific input that makes the network biased towards one modality. Hence, the generalization of such models becomes a significant problem where the non-dominant input modality during training could be contributing more to the course of inference. Here, we introduce a novel training setup with regularizer in the multimodal architecture to resolve the problem of this disparity between the modalities. Specifically, our regularizer term helps to make the feature fusion method more robust by considering both the feature extractors equivalently important during the training to extract the multimodal distribution which is referred to as removing the imbalance problem. Furthermore, our decoupling concept of output stream helps the detection task by sharing the spatial sensitive information mutually. Extensive experiments of the proposed method on KAIST and UTokyo datasets shows improvement of the respective state-of-the-art performance.

Real-world problems are often comprised of many objectives and require solutions that carefully trade-off between them. Current approaches to many-objective optimization often require challenging assumptions, like knowledge of the importance/difficulty of objectives in a weighted-sum single-objective paradigm, or enormous populations to overcome the curse of dimensionality in multi-objective Pareto optimization. Combining elements from Many-Objective Evolutionary Algorithms and Quality Diversity algorithms like MAP-Elites, we propose Many-objective Optimization via Voting for Elites (MOVE). MOVE maintains a map of elites that perform well on different subsets of the objective functions. On a 14-objective image-neuroevolution problem, we demonstrate that MOVE is viable with a population of as few as 50 elites and outperforms a naive single-objective baseline. We find that the algorithm's performance relies on solutions jumping across bins (for a parent to produce a child that is elite for a different subset of objectives). We suggest that this type of goal-switching is an implicit method to automatic identification of stepping stones or curriculum learning. We comment on the similarities and differences between MOVE and MAP-Elites, hoping to provide insight to aid in the understanding of that approach $\unicode{x2013}$ and suggest future work that may inform this approach's use for many-objective problems in general.

The paradigm of self-supervision focuses on representation learning from raw data without the need of labor-consuming annotations, which is the main bottleneck of current data-driven methods. Self-supervision tasks are often used to pre-train a neural network with a large amount of unlabeled data and extract generic features of the dataset. The learned model is likely to contain useful information which can be transferred to the downstream main task and improve performance compared to random parameter initialization. In this paper, we propose a new self-supervision task called source identification (SI), which is inspired by the classic blind source separation problem. Synthetic images are generated by fusing multiple source images and the network's task is to reconstruct the original images, given the fused images. A proper understanding of the image content is required to successfully solve the task. We validate our method on two medical image segmentation tasks: brain tumor segmentation and white matter hyperintensities segmentation. The results show that the proposed SI task outperforms traditional self-supervision tasks for dense predictions including inpainting, pixel shuffling, intensity shift, and super-resolution. Among variations of the SI task fusing images of different types, fusing images from different patients performs best.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

In this paper, we present an accurate and scalable approach to the face clustering task. We aim at grouping a set of faces by their potential identities. We formulate this task as a link prediction problem: a link exists between two faces if they are of the same identity. The key idea is that we find the local context in the feature space around an instance (face) contains rich information about the linkage relationship between this instance and its neighbors. By constructing sub-graphs around each instance as input data, which depict the local context, we utilize the graph convolution network (GCN) to perform reasoning and infer the likelihood of linkage between pairs in the sub-graphs. Experiments show that our method is more robust to the complex distribution of faces than conventional methods, yielding favorably comparable results to state-of-the-art methods on standard face clustering benchmarks, and is scalable to large datasets. Furthermore, we show that the proposed method does not need the number of clusters as prior, is aware of noises and outliers, and can be extended to a multi-view version for more accurate clustering accuracy.

This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional long short term memory (LSTM) layers to create an interweaved recurrent-convolutional architecture. Additionally, we propose an efficient Bottleneck-LSTM layer that significantly reduces computational cost compared to regular LSTMs. Our network achieves temporal awareness by using Bottleneck-LSTMs to refine and propagate feature maps across frames. This approach is substantially faster than existing detection methods in video, outperforming the fastest single-frame models in model size and computational cost while attaining accuracy comparable to much more expensive single-frame models on the Imagenet VID 2015 dataset. Our model reaches a real-time inference speed of up to 15 FPS on a mobile CPU.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

Person re-identification (\textit{re-id}) refers to matching pedestrians across disjoint yet non-overlapping camera views. The most effective way to match these pedestrians undertaking significant visual variations is to seek reliably invariant features that can describe the person of interest faithfully. Most of existing methods are presented in a supervised manner to produce discriminative features by relying on labeled paired images in correspondence. However, annotating pair-wise images is prohibitively expensive in labors, and thus not practical in large-scale networked cameras. Moreover, seeking comparable representations across camera views demands a flexible model to address the complex distributions of images. In this work, we study the co-occurrence statistic patterns between pairs of images, and propose to crossing Generative Adversarial Network (Cross-GAN) for learning a joint distribution for cross-image representations in a unsupervised manner. Given a pair of person images, the proposed model consists of the variational auto-encoder to encode the pair into respective latent variables, a proposed cross-view alignment to reduce the view disparity, and an adversarial layer to seek the joint distribution of latent representations. The learned latent representations are well-aligned to reflect the co-occurrence patterns of paired images. We empirically evaluate the proposed model against challenging datasets, and our results show the importance of joint invariant features in improving matching rates of person re-id with comparison to semi/unsupervised state-of-the-arts.

北京阿比特科技有限公司