亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated learning (FL) emphasizes decentralized training by storing data locally and sending only model updates, underlining user privacy. Recently, a line of works on privacy attacks impairs user privacy by extracting sensitive training text from language models in the context of FL. Yet, these attack techniques face distinct hurdles: some work chiefly with limited batch sizes (e.g., batch size of 1), and others are easily detectable. This paper introduces an innovative approach that is challenging to detect, significantly enhancing the recovery rate of text in various batch-size settings. Building on fundamental gradient matching and domain prior knowledge, we enhance the attack by recovering the input of the Pooler layer of language models, which enables us to provide additional supervised signals at the feature level. Unlike gradient data, these signals do not average across sentences and tokens, thereby offering more nuanced and effective insights. We benchmark our method using text classification tasks on datasets such as CoLA, SST-2, and Rotten Tomatoes. Across different batch sizes and models, our approach consistently outperforms previous state-of-the-art results.

相關內容

Deep learning (DL) has become one of the mainstream and effective methods for point cloud analysis tasks such as detection, segmentation and classification. To reduce overfitting during training DL models and improve model performance especially when the amount and/or diversity of training data are limited, augmentation is often crucial. Although various point cloud data augmentation methods have been widely used in different point cloud processing tasks, there are currently no published systematic surveys or reviews of these methods. Therefore, this article surveys these methods, categorizing them into a taxonomy framework that comprises basic and advanced point cloud data augmentation methods, according to their levels of complexity. Through a comprehensive evaluation of these augmentation methods, this article identifies their potentials and limitations, serving as a useful reference for choosing appropriate augmentation methods. In addition, potential directions for future research are recommended. This survey contributes to providing a holistic overview of the current state of point cloud data augmentation, promoting its wider application and development.

This study investigates self-supervised learning techniques to obtain representations of Event Sequences. It is a key modality in various applications, including but not limited to banking, e-commerce, and healthcare. We perform a comprehensive study of generative and contrastive approaches in self-supervised learning, applying them both independently. We find that there is no single supreme method. Consequently, we explore the potential benefits of combining these approaches. To achieve this goal, we introduce a novel method that aligns generative and contrastive embeddings as distinct modalities, drawing inspiration from contemporary multimodal research. Generative and contrastive approaches are often treated as mutually exclusive, leaving a gap for their combined exploration. Our results demonstrate that this aligned model performs at least on par with, and mostly surpasses, existing methods and is more universal across a variety of tasks. Furthermore, we demonstrate that self-supervised methods consistently outperform the supervised approach on our datasets.

Federated learning (FL) enables multiple clients to collaboratively learn a shared model without sharing their individual data. Concerns about utility, privacy, and training efficiency in FL have garnered significant research attention. Differential privacy has emerged as a prevalent technique in FL, safeguarding the privacy of individual user data while impacting utility and training efficiency. Within Differential Privacy Federated Learning (DPFL), previous studies have primarily focused on the utility-privacy trade-off, neglecting training efficiency, which is crucial for timely completion. Moreover, differential privacy achieves privacy by introducing controlled randomness (noise) on selected clients in each communication round. Previous work has mainly examined the impact of noise level ($\sigma$) and communication rounds ($T$) on the privacy-utility dynamic, overlooking other influential factors like the sample ratio ($q$, the proportion of selected clients). This paper systematically formulates an efficiency-constrained utility-privacy bi-objective optimization problem in DPFL, focusing on $\sigma$, $T$, and $q$. We provide a comprehensive theoretical analysis, yielding analytical solutions for the Pareto front. Extensive empirical experiments verify the validity and efficacy of our analysis, offering valuable guidance for low-cost parameter design in DPFL.

Previous learning-based vulnerability detection methods relied on either medium-sized pre-trained models or smaller neural networks from scratch. Recent advancements in Large Pre-Trained Language Models (LLMs) have showcased remarkable few-shot learning capabilities in various tasks. However, the effectiveness of LLMs in detecting software vulnerabilities is largely unexplored. This paper aims to bridge this gap by exploring how LLMs perform with various prompts, particularly focusing on two state-of-the-art LLMs: GPT-3.5 and GPT-4. Our experimental results showed that GPT-3.5 achieves competitive performance with the prior state-of-the-art vulnerability detection approach and GPT-4 consistently outperformed the state-of-the-art.

Deep learning models are trained with certain assumptions about the data during the development stage and then used for prediction in the deployment stage. It is important to reason about the trustworthiness of the model's predictions with unseen data during deployment. Existing methods for specifying and verifying traditional software are insufficient for this task, as they cannot handle the complexity of DNN model architecture and expected outcomes. In this work, we propose a novel technique that uses rules derived from neural network computations to infer data preconditions for a DNN model to determine the trustworthiness of its predictions. Our approach, DeepInfer involves introducing a novel abstraction for a trained DNN model that enables weakest precondition reasoning using Dijkstra's Predicate Transformer Semantics. By deriving rules over the inductive type of neural network abstract representation, we can overcome the matrix dimensionality issues that arise from the backward non-linear computation from the output layer to the input layer. We utilize the weakest precondition computation using rules of each kind of activation function to compute layer-wise precondition from the given postcondition on the final output of a deep neural network. We extensively evaluated DeepInfer on 29 real-world DNN models using four different datasets collected from five different sources and demonstrated the utility, effectiveness, and performance improvement over closely related work. DeepInfer efficiently detects correct and incorrect predictions of high-accuracy models with high recall (0.98) and high F-1 score (0.84) and has significantly improved over prior technique, SelfChecker. The average runtime overhead of DeepInfer is low, 0.22 sec for all unseen datasets. We also compared runtime overhead using the same hardware settings and found that DeepInfer is 3.27 times faster than SelfChecker.

We propose a novel coding scheme for DNA-based storage systems, called the shift-interleave (SI) coding, designed to correct insertion, deletion, and substitution (IDS) errors, as well as sequence losses. The SI coding scheme employs multiple codewords from two binary low-density parity-check codes. These codewords are processed to form DNA base sequences through shifting, bit-to-base mapping, and interleaving. At the receiver side, an efficient non-iterative detection and decoding scheme is employed to sequentially estimate codewords. The numerical results demonstrate the excellent performance of the SI coding scheme in correcting both IDS errors and sequence losses.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

In light of the emergence of deep reinforcement learning (DRL) in recommender systems research and several fruitful results in recent years, this survey aims to provide a timely and comprehensive overview of the recent trends of deep reinforcement learning in recommender systems. We start with the motivation of applying DRL in recommender systems. Then, we provide a taxonomy of current DRL-based recommender systems and a summary of existing methods. We discuss emerging topics and open issues, and provide our perspective on advancing the domain. This survey serves as introductory material for readers from academia and industry into the topic and identifies notable opportunities for further research.

Visual information extraction (VIE) has attracted considerable attention recently owing to its various advanced applications such as document understanding, automatic marking and intelligent education. Most existing works decoupled this problem into several independent sub-tasks of text spotting (text detection and recognition) and information extraction, which completely ignored the high correlation among them during optimization. In this paper, we propose a robust visual information extraction system (VIES) towards real-world scenarios, which is a unified end-to-end trainable framework for simultaneous text detection, recognition and information extraction by taking a single document image as input and outputting the structured information. Specifically, the information extraction branch collects abundant visual and semantic representations from text spotting for multimodal feature fusion and conversely, provides higher-level semantic clues to contribute to the optimization of text spotting. Moreover, regarding the shortage of public benchmarks, we construct a fully-annotated dataset called EPHOIE (//github.com/HCIILAB/EPHOIE), which is the first Chinese benchmark for both text spotting and visual information extraction. EPHOIE consists of 1,494 images of examination paper head with complex layouts and background, including a total of 15,771 Chinese handwritten or printed text instances. Compared with the state-of-the-art methods, our VIES shows significant superior performance on the EPHOIE dataset and achieves a 9.01% F-score gain on the widely used SROIE dataset under the end-to-end scenario.

北京阿比特科技有限公司