Climate change poses critical challenges globally, disproportionately affecting low-income countries that often lack resources and linguistic representation on the international stage. Despite Bangladesh's status as one of the most vulnerable nations to climate impacts, research gaps persist in Bengali-language studies related to climate change and NLP. To address this disparity, we introduce Dhoroni, a novel Bengali (Bangla) climate change and environmental news dataset, comprising a 2300 annotated Bangla news articles, offering multiple perspectives such as political influence, scientific/statistical data, authenticity, stance detection, and stakeholder involvement. Furthermore, we present an in-depth exploratory analysis of Dhoroni and introduce BanglaBERT-Dhoroni family, a novel baseline model family for climate and environmental opinion detection in Bangla, fine-tuned on our dataset. This research contributes significantly to enhancing accessibility and analysis of climate discourse in Bengali (Bangla), addressing crucial communication and research gaps in climate-impacted regions like Bangladesh with 180 million people.
Generating tabular data under differential privacy (DP) protection ensures theoretical privacy guarantees but poses challenges for training machine learning models, primarily due to the need to capture complex structures under noisy supervision signals. Recently, pre-trained Large Language Models (LLMs) -- even those at the scale of GPT-2 -- have demonstrated great potential in synthesizing tabular data. However, their applications under DP constraints remain largely unexplored. In this work, we address this gap by applying DP techniques to the generation of synthetic tabular data. Our findings shows that LLMs face difficulties in generating coherent text when fine-tuned with DP, as privacy budgets are inefficiently allocated to non-private elements like table structures. To overcome this, we propose \ours, a two-stage fine-tuning framework for differentially private tabular data generation. The first stage involves non-private fine-tuning on a pseudo dataset, followed by DP fine-tuning on a private dataset. Our empirical results show that this approach improves performance across various settings and metrics compared to directly fine-tuned LLMs in DP contexts. We release our code and setup at //github.com/tejuafonja/DP-2Stage.
With the rapid evolution of 3D generation algorithms, the cost of producing 3D humanoid character models has plummeted, yet the field is impeded by the lack of a comprehensive dataset for automatic rigging, which is a pivotal step in character animation. Addressing this gap, we present HumanRig, the first large-scale dataset specifically designed for 3D humanoid character rigging, encompassing 11,434 meticulously curated T-posed meshes adhered to a uniform skeleton topology. Capitalizing on this dataset, we introduce an innovative, data-driven automatic rigging framework, which overcomes the limitations of GNN-based methods in handling complex AI-generated meshes. Our approach integrates a Prior-Guided Skeleton Estimator (PGSE) module, which uses 2D skeleton joints to provide a preliminary 3D skeleton, and a Mesh-Skeleton Mutual Attention Network (MSMAN) that fuses skeleton features with 3D mesh features extracted by a U-shaped point transformer. This enables a coarse-to-fine 3D skeleton joint regression and a robust skinning estimation, surpassing previous methods in quality and versatility. This work not only remedies the dataset deficiency in rigging research but also propels the animation industry towards more efficient and automated character rigging pipelines.
Despite the recent success of two-stage prototypical networks in few-shot named entity recognition (NER), challenges such as over/under-detected false spans in the span detection stage and unaligned entity prototypes in the type classification stage persist. Additionally, LLMs have not proven to be effective few-shot information extractors in general. In this paper, we propose an approach called Boundary-Aware LLMs for Few-Shot Named Entity Recognition to address these issues. We introduce a boundary-aware contrastive learning strategy to enhance the LLM's ability to perceive entity boundaries for generalized entity spans. Additionally, we utilize LoRAHub to align information from the target domain to the source domain, thereby enhancing adaptive cross-domain classification capabilities. Extensive experiments across various benchmarks demonstrate that our framework outperforms prior methods, validating its effectiveness. In particular, the proposed strategies demonstrate effectiveness across a range of LLM architectures. The code and data are released on //github.com/UESTC-GQJ/BANER.
Autonomous systems have witnessed a rapid increase in their capabilities, but it remains a challenge for them to perform tasks both effectively and safely. The fact that performance and safety can sometimes be competing objectives renders the cooptimization between them difficult. One school of thought is to treat this cooptimization as a constrained optimal control problem with a performance-oriented objective function and safety as a constraint. However, solving this constrained optimal control problem for general nonlinear systems remains challenging. In this work, we use the general framework of constrained optimal control, but given the safety state constraint, we convert it into an equivalent control constraint, resulting in a state and time-dependent control-constrained optimal control problem. This equivalent optimal control problem can readily be solved using the dynamic programming principle. We show the corresponding value function is a viscosity solution of a certain Hamilton-Jacobi-Bellman Partial Differential Equation (HJB-PDE). Furthermore, we demonstrate the effectiveness of our method with a two-dimensional case study, and the experiment shows that the controller synthesized using our method consistently outperforms the baselines, both in safety and performance.
Animating stylized avatars with dynamic poses and expressions has attracted increasing attention for its broad range of applications. Previous research has made significant progress by training controllable generative models to synthesize animations based on reference characteristics, pose, and expression conditions. However, the mechanisms used in these methods to control pose and expression often inadvertently introduce unintended features from the target motion, while also causing a loss of expression-related details, particularly when applied to stylized animation. This paper proposes a new method based on Stable Diffusion, called AniFaceDiff, incorporating a new conditioning module for animating stylized avatars. First, we propose a refined spatial conditioning approach by Facial Alignment to prevent the inclusion of identity characteristics from the target motion. Then, we introduce an Expression Adapter that incorporates additional cross-attention layers to address the potential loss of expression-related information. Our approach effectively preserves pose and expression from the target video while maintaining input image consistency. Extensive experiments demonstrate that our method achieves state-of-the-art results, showcasing superior image quality, preservation of reference features, and expression accuracy, particularly for out-of-domain animation across diverse styles, highlighting its versatility and strong generalization capabilities. This work aims to enhance the quality of virtual stylized animation for positive applications. To promote responsible use in virtual environments, we contribute to the advancement of detection for generative content by evaluating state-of-the-art detectors, highlighting potential areas for improvement, and suggesting solutions.
Existing methodologies for animating portrait images face significant challenges, particularly in handling non-frontal perspectives, rendering dynamic objects around the portrait, and generating immersive, realistic backgrounds. In this paper, we introduce the first application of a pretrained transformer-based video generative model that demonstrates strong generalization capabilities and generates highly dynamic, realistic videos for portrait animation, effectively addressing these challenges. The adoption of a new video backbone model makes previous U-Net-based methods for identity maintenance, audio conditioning, and video extrapolation inapplicable. To address this limitation, we design an identity reference network consisting of a causal 3D VAE combined with a stacked series of transformer layers, ensuring consistent facial identity across video sequences. Additionally, we investigate various speech audio conditioning and motion frame mechanisms to enable the generation of continuous video driven by speech audio. Our method is validated through experiments on benchmark and newly proposed wild datasets, demonstrating substantial improvements over prior methods in generating realistic portraits characterized by diverse orientations within dynamic and immersive scenes. Further visualizations and the source code are available at: //github.com/fudan-generative-vision/hallo3.
The advancement of large Vision-Language-Action (VLA) models has significantly improved robotic manipulation in terms of language-guided task execution and generalization to unseen scenarios. While existing VLAs adapted from pretrained large Vision-Language-Models (VLM) have demonstrated promising generalizability, their task performance is still unsatisfactory as indicated by the low tasks success rates in different environments. In this paper, we present a new advanced VLA architecture derived from VLM. Unlike previous works that directly repurpose VLM for action prediction by simple action quantization, we propose a omponentized VLA architecture that has a specialized action module conditioned on VLM output. We systematically study the design of the action module and demonstrates the strong performance enhancement with diffusion action transformers for action sequence modeling, as well as their favorable scaling behaviors. We also conduct comprehensive experiments and ablation studies to evaluate the efficacy of our models with varied designs. The evaluation on 5 robot embodiments in simulation and real work shows that our model not only significantly surpasses existing VLAs in task performance and but also exhibits remarkable adaptation to new robots and generalization to unseen objects and backgrounds. It exceeds the average success rates of OpenVLA which has similar model size (7B) with ours by over 35% in simulated evaluation and 55% in real robot experiments. It also outperforms the large RT-2-X model (55B) by 18% absolute success rates in simulation. Code and models can be found on our project page (//cogact.github.io/).
Mining parallel document pairs poses a significant challenge because existing sentence embedding models often have limited context windows, preventing them from effectively capturing document-level information. Another overlooked issue is the lack of concrete evaluation benchmarks comprising high-quality parallel document pairs for assessing document-level mining approaches, particularly for Indic languages. In this study, we introduce Pralekha, a large-scale benchmark for document-level alignment evaluation. Pralekha includes over 2 million documents, with a 1:2 ratio of unaligned to aligned pairs, covering 11 Indic languages and English. Using Pralekha, we evaluate various document-level mining approaches across three dimensions: the embedding models, the granularity levels, and the alignment algorithm. To address the challenge of aligning documents using sentence and chunk-level alignments, we propose a novel scoring method, Document Alignment Coefficient (DAC). DAC demonstrates substantial improvements over baseline pooling approaches, particularly in noisy scenarios, achieving average gains of 20-30% in precision and 15-20% in F1 score. These results highlight DAC's effectiveness in parallel document mining for Indic languages.
Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.
Object tracking is challenging as target objects often undergo drastic appearance changes over time. Recently, adaptive correlation filters have been successfully applied to object tracking. However, tracking algorithms relying on highly adaptive correlation filters are prone to drift due to noisy updates. Moreover, as these algorithms do not maintain long-term memory of target appearance, they cannot recover from tracking failures caused by heavy occlusion or target disappearance in the camera view. In this paper, we propose to learn multiple adaptive correlation filters with both long-term and short-term memory of target appearance for robust object tracking. First, we learn a kernelized correlation filter with an aggressive learning rate for locating target objects precisely. We take into account the appropriate size of surrounding context and the feature representations. Second, we learn a correlation filter over a feature pyramid centered at the estimated target position for predicting scale changes. Third, we learn a complementary correlation filter with a conservative learning rate to maintain long-term memory of target appearance. We use the output responses of this long-term filter to determine if tracking failure occurs. In the case of tracking failures, we apply an incrementally learned detector to recover the target position in a sliding window fashion. Extensive experimental results on large-scale benchmark datasets demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods in terms of efficiency, accuracy, and robustness.