"mdendro" is an R package that provides a comprehensive collection of linkage methods for agglomerative hierarchical clustering on a matrix of proximity data (distances or similarities), returning a multifurcated dendrogram or multidendrogram. Multidendrograms can group more than two clusters at the same time, solving the nonuniqueness problem that arises when there are ties in the data. This problem causes that different binary dendrograms are possible depending both on the order of the input data and on the criterion used to break ties. Weighted and unweighted versions of the most common linkage methods are included in the package, which also implements two parametric linkage methods. In addition, package "mdendro" provides five descriptive measures to analyze the resulting dendrograms: cophenetic correlation coefficient, space distortion ratio, agglomeration coefficient, chaining coefficient and tree balance.
Robust optimisation is a well-established framework for optimising functions in the presence of uncertainty. The inherent goal of this problem is to identify a collection of inputs whose outputs are both desirable for the decision maker, whilst also being robust to the underlying uncertainties in the problem. In this work, we study the multi-objective case of this problem. We identify that the majority of all robust multi-objective algorithms rely on two key operations: robustification and scalarisation. Robustification refers to the strategy that is used to account for the uncertainty in the problem. Scalarisation refers to the procedure that is used to encode the relative importance of each objective to a scalar-valued reward. As these operations are not necessarily commutative, the order that they are performed in has an impact on the resulting solutions that are identified and the final decisions that are made. The purpose of this work is to give a thorough exposition on the effects of these different orderings and in particular highlight when one should opt for one ordering over the other. As part of our analysis, we showcase how many existing risk concepts can be integrated into the specification and solution of a robust multi-objective optimisation problem. Besides this, we also demonstrate how one can principally define the notion of a robust Pareto front and a robust performance metric based on our ``robustify and scalarise'' methodology. To illustrate the efficacy of these new ideas, we present two insightful case studies which are based on real-world data sets.
The objective of this paper is to address the localization problem using omnidirectional images captured by a catadioptric vision system mounted on the robot. For this purpose, we explore the potential of Siamese Neural Networks for modeling indoor environments using panoramic images as the unique source of information. Siamese Neural Networks are characterized by their ability to generate a similarity function between two input data, in this case, between two panoramic images. In this study, Siamese Neural Networks composed of two Convolutional Neural Networks (CNNs) are used. The output of each CNN is a descriptor which is used to characterize each image. The dissimilarity of the images is computed by measuring the distance between these descriptors. This fact makes Siamese Neural Networks particularly suitable to perform image retrieval tasks. First, we evaluate an initial task strongly related to localization that consists in detecting whether two images have been captured in the same or in different rooms. Next, we assess Siamese Neural Networks in the context of a global localization problem. The results outperform previous techniques for solving the localization task using the COLD-Freiburg dataset, in a variety of lighting conditions, specially when using images captured in cloudy and night conditions.
We introduce a general class of autoregressive models for studying the dynamic of multivariate binary time series with stationary exogenous covariates. Using a high-level set of assumptions, we show that existence of a stationary path for such models is almost automatic and does not require parameter restrictions when the noise term is not compactly supported. We then study in details statistical inference in a dynamic version of a multivariate probit type model, as a particular case of our general construction. To avoid a complex likelihood optimization, we combine pseudo-likelihood and pairwise likelihood methods for which asymptotic results are obtained for a single path analysis and also for panel data, using ergodic theorems for multi-indexed partial sums. The latter scenario is particularly important for analyzing absence-presence of species in Ecology, a field where data are often collected from surveys at various locations. Our results also give a theoretical background for such models which are often used by the practitioners but without a probabilistic framework.
High-performance computing (HPC) has revolutionized our ability to perform detailed simulations of complex real-world processes. A prominent contemporary example is from aerospace propulsion, where HPC is used for rotating detonation rocket engine (RDRE) simulations in support of the design of next-generation rocket engines; however, these simulations take millions of core hours even on powerful supercomputers, which makes them impractical for engineering tasks like design exploration and risk assessment. Reduced-order models (ROMs) address this limitation by constructing computationally cheap yet sufficiently accurate approximations that serve as surrogates for the high-fidelity model. This paper contributes a new distributed algorithm that achieves fast and scalable construction of predictive physics-based ROMs trained from sparse datasets of extremely large state dimension. The algorithm learns structured physics-based ROMs that approximate the dynamical systems underlying those datasets. This enables model reduction for problems at a scale and complexity that exceeds the capabilities of existing approaches. We demonstrate our algorithm's scalability using up to $2,048$ cores on the Frontera supercomputer at the Texas Advanced Computing Center. We focus on a real-world three-dimensional RDRE for which one millisecond of simulated physical time requires one million core hours on a supercomputer. Using a training dataset of $2,536$ snapshots each of state dimension $76$ million, our distributed algorithm enables the construction of a predictive data-driven reduced model in just $13$ seconds on $2,048$ cores on Frontera.
The discretization of fluid-poromechanics systems is typically highly demanding in terms of computational effort. This is particularly true for models of multiphysics flows in the brain, due to the geometrical complexity of the cerebral anatomy - requiring a very fine computational mesh for finite element discretization - and to the high number of variables involved. Indeed, this kind of problems can be modeled by a coupled system encompassing the Stokes equations for the cerebrospinal fluid in the brain ventricles and Multiple-network Poro-Elasticity (MPE) equations describing the brain tissue, the interstitial fluid, and the blood vascular networks at different space scales. The present work aims to rigorously derive a posteriori error estimates for the coupled Stokes-MPE problem, as a first step towards the design of adaptive refinement strategies or reduced order models to decrease the computational demand of the problem. Through numerical experiments, we verify the reliability and optimal efficiency of the proposed a posteriori estimator and identify the role of the different solution variables in its composition.
We present a framework for intuitive robot programming by non-experts, leveraging natural language prompts and contextual information from the Robot Operating System (ROS). Our system integrates large language models (LLMs), enabling non-experts to articulate task requirements to the system through a chat interface. Key features of the framework include: integration of ROS with an AI agent connected to a plethora of open-source and commercial LLMs, automatic extraction of a behavior from the LLM output and execution of ROS actions/services, support for three behavior modes (sequence, behavior tree, state machine), imitation learning for adding new robot actions to the library of possible actions, and LLM reflection via human and environment feedback. Extensive experiments validate the framework, showcasing robustness, scalability, and versatility in diverse scenarios, including long-horizon tasks, tabletop rearrangements, and remote supervisory control. To facilitate the adoption of our framework and support the reproduction of our results, we have made our code open-source. You can access it at: //github.com/huawei-noah/HEBO/tree/master/ROSLLM.
The broad class of multivariate unified skew-normal (SUN) distributions has been recently shown to possess important conjugacy properties. When used as priors for the vector of parameters in general probit, tobit, and multinomial probit models, these distributions yield posteriors that still belong to the SUN family. Although such a core result has led to important advancements in Bayesian inference and computation, its applicability beyond likelihoods associated with fully-observed, discretized, or censored realizations from multivariate Gaussian models remains yet unexplored. This article covers such an important gap by proving that the wider family of multivariate unified skew-elliptical (SUE) distributions, which extends SUNs to more general perturbations of elliptical densities, guarantees conjugacy for broader classes of models, beyond those relying on fully-observed, discretized or censored Gaussians. Such a result leverages the closure under linear combinations, conditioning and marginalization of SUE to prove that this family is conjugate to the likelihood induced by general multivariate regression models for fully-observed, censored or dichotomized realizations from skew-elliptical distributions. This advancement enlarges the set of models that enable conjugate Bayesian inference to general formulations arising from elliptical and skew-elliptical families, including the multivariate Student's t and skew-t, among others.
The Retinex theory models the image as a product of illumination and reflection components, which has received extensive attention and is widely used in image enhancement, segmentation and color restoration. However, it has been rarely used in additive noise removal due to the inclusion of both multiplication and addition operations in the Retinex noisy image modeling. In this paper, we propose an exponential Retinex decomposition model based on hybrid non-convex regularization and weak space oscillation-modeling for image denoising. The proposed model utilizes non-convex first-order total variation (TV) and non-convex second-order TV to regularize the reflection component and the illumination component, respectively, and employs weak $H^{-1}$ norm to measure the residual component. By utilizing different regularizers, the proposed model effectively decomposes the image into reflection, illumination, and noise components. An alternating direction multipliers method (ADMM) combined with the Majorize-Minimization (MM) algorithm is developed to solve the proposed model. Furthermore, we provide a detailed proof of the convergence property of the algorithm. Numerical experiments validate both the proposed model and algorithm. Compared with several state-of-the-art denoising models, the proposed model exhibits superior performance in terms of peak signal-to-noise ratio (PSNR) and mean structural similarity (MSSIM).
Understanding causal relationships in dynamic systems is essential for numerous scientific fields, including epidemiology, economics, and biology. While causal inference methods have been extensively studied, they often rely on fully specified causal graphs, which may not always be available or practical in complex dynamic systems. Partially specified causal graphs, such as summary causal graphs (SCGs), provide a simplified representation of causal relationships, omitting temporal information and focusing on high-level causal structures. This simplification introduces new challenges concerning the types of queries of interest: macro queries, which involve relationships between clusters represented as vertices in the graph, and micro queries, which pertain to relationships between variables that are not directly visible through the vertices of the graph. In this paper, we first clearly distinguish between macro conditional independencies and micro conditional independencies and between macro total effects and micro total effects. Then, we demonstrate the soundness and completeness of the d-separation to identify macro conditional independencies in SCGs. Furthermore, we establish that the do-calculus is sound and complete for identifying macro total effects in SCGs. Conversely, we also show through various examples that these results do not hold when considering micro conditional independencies and micro total effects.
Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.