In split inference, a deep neural network (DNN) is partitioned to run the early part of the DNN at the edge and the later part of the DNN in the cloud. This meets two key requirements for on-device machine learning: input privacy and computation efficiency. Still, an open question in split inference is output privacy, given that the outputs of the DNN are observable in the cloud. While encrypted computing can protect output privacy too, homomorphic encryption requires substantial computation and communication resources from both edge and cloud devices. In this paper, we introduce Salted DNNs: a novel approach that enables clients at the edge, who run the early part of the DNN, to control the semantic interpretation of the DNN's outputs at inference time. Our proposed Salted DNNs maintain classification accuracy and computation efficiency very close to the standard DNN counterparts. Experimental evaluations conducted on both images and wearable sensor data demonstrate that Salted DNNs attain classification accuracy very close to standard DNNs, particularly when the Salted Layer is positioned within the early part to meet the requirements of split inference. Our approach is general and can be applied to various types of DNNs. As a benchmark for future studies, we open-source our code.
We prove that training neural networks on 1-D data is equivalent to solving a convex Lasso problem with a fixed, explicitly defined dictionary matrix of features. The specific dictionary depends on the activation and depth. We consider 2-layer networks with piecewise linear activations, deep narrow ReLU networks with up to 4 layers, and rectangular and tree networks with sign activation and arbitrary depth. Interestingly in ReLU networks, a fourth layer creates features that represent reflections of training data about themselves. The Lasso representation sheds insight to globally optimal networks and the solution landscape.
Deep neural network (DNN) typically involves convolutions, pooling, and activation function. Due to the growing concern about privacy, privacy-preserving DNN becomes a hot research topic. Generally, the convolution and pooling operations can be supported by additive homomorphic and secure comparison, but the secure implementation of activation functions is not so straightforward for the requirements of accuracy and efficiency, especially for the non-linear ones such as exponential, sigmoid, and tanh functions. This paper pays a special attention to the implementation of such non-linear functions in semi-honest model with two-party settings, for which SIRNN is the current state-of-the-art. Different from previous works, we proposed improved implementations for these functions by using their intrinsic features as well as worthy tiny tricks. At first, we propose a novel and efficient protocol for exponential function by using a divide-and-conquer strategy with most of the computations executed locally. Exponential protocol is widely used in machine learning tasks such as Poisson regression, and is also a key component of sigmoid and tanh functions. Next, we take advantage of the symmetry of sigmoid and Tanh, and fine-tune the inputs to reduce the 2PC building blocks, which helps to save overhead and improve performance. As a result, we implement these functions with fewer fundamental building blocks. The comprehensive evaluations show that our protocols achieve state-of-the-art precision while reducing run-time by approximately 57%, 44%, and 42% for exponential (with only negative inputs), sigmoid, and Tanh functions, respectively.
Deep neural networks (DNNs) have proven to be highly effective in a variety of tasks, making them the go-to method for problems requiring high-level predictive power. Despite this success, the inner workings of DNNs are often not transparent, making them difficult to interpret or understand. This lack of interpretability has led to increased research on inherently interpretable neural networks in recent years. Models such as Neural Additive Models (NAMs) achieve visual interpretability through the combination of classical statistical methods with DNNs. However, these approaches only concentrate on mean response predictions, leaving out other properties of the response distribution of the underlying data. We propose Neural Additive Models for Location Scale and Shape (NAMLSS), a modelling framework that combines the predictive power of classical deep learning models with the inherent advantages of distributional regression while maintaining the interpretability of additive models. The code is available at the following link: //github.com/AnFreTh/NAMpy
Recurrent neural networks (RNNs) have fast inference and scale efficiently on long sequences, but they are difficult to train and hard to scale. We propose Hawk, an RNN with gated linear recurrences, and Griffin, a hybrid model that mixes gated linear recurrences with local attention. Hawk exceeds the reported performance of Mamba on downstream tasks, while Griffin matches the performance of Llama-2 despite being trained on over 6 times fewer tokens. We also show that Griffin can extrapolate on sequences significantly longer than those seen during training. Our models match the hardware efficiency of Transformers during training, and during inference they have lower latency and significantly higher throughput. We scale Griffin up to 14B parameters, and explain how to shard our models for efficient distributed training.
Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.
Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.
Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.
Since real-world objects and their interactions are often multi-modal and multi-typed, heterogeneous networks have been widely used as a more powerful, realistic, and generic superclass of traditional homogeneous networks (graphs). Meanwhile, representation learning (\aka~embedding) has recently been intensively studied and shown effective for various network mining and analytical tasks. In this work, we aim to provide a unified framework to deeply summarize and evaluate existing research on heterogeneous network embedding (HNE), which includes but goes beyond a normal survey. Since there has already been a broad body of HNE algorithms, as the first contribution of this work, we provide a generic paradigm for the systematic categorization and analysis over the merits of various existing HNE algorithms. Moreover, existing HNE algorithms, though mostly claimed generic, are often evaluated on different datasets. Understandable due to the application favor of HNE, such indirect comparisons largely hinder the proper attribution of improved task performance towards effective data preprocessing and novel technical design, especially considering the various ways possible to construct a heterogeneous network from real-world application data. Therefore, as the second contribution, we create four benchmark datasets with various properties regarding scale, structure, attribute/label availability, and \etc.~from different sources, towards handy and fair evaluations of HNE algorithms. As the third contribution, we carefully refactor and amend the implementations and create friendly interfaces for 13 popular HNE algorithms, and provide all-around comparisons among them over multiple tasks and experimental settings.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.