Spurious correlations in the data, where multiple cues are predictive of the target labels, often lead to shortcut learning phenomena, where a model may rely on erroneous, easy-to-learn, cues while ignoring reliable ones. In this work, we propose an ensemble diversification framework exploiting the generation of synthetic counterfactuals using Diffusion Probabilistic Models (DPMs). We discover that DPMs have the inherent capability to represent multiple visual cues independently, even when they are largely correlated in the training data. We leverage this characteristic to encourage model diversity and empirically show the efficacy of the approach with respect to several diversification objectives. We show that diffusion-guided diversification can lead models to avert attention from shortcut cues, achieving ensemble diversity performance comparable to previous methods requiring additional data collection.
Artificial intelligence and deep learning are currently reshaping numerical simulation frameworks by introducing new modeling capabilities. These frameworks are extensively investigated in the context of model correction and parameterization where they demonstrate great potential and often outperform traditional physical models. Most of these efforts in defining hybrid dynamical systems follow {offline} learning strategies in which the neural parameterization (called here sub-model) is trained to output an ideal correction. Yet, these hybrid models can face hard limitations when defining what should be a relevant sub-model response that would translate into a good forecasting performance. End-to-end learning schemes, also referred to as online learning, could address such a shortcoming by allowing the deep learning sub-models to train on historical data. However, defining end-to-end training schemes for the calibration of neural sub-models in hybrid systems requires working with an optimization problem that involves the solver of the physical equations. Online learning methodologies thus require the numerical model to be differentiable, which is not the case for most modeling systems. To overcome this difficulty and bypass the differentiability challenge of physical models, we present an efficient and practical online learning approach for hybrid systems. The method, called EGA for Euler Gradient Approximation, assumes an additive neural correction to the physical model, and an explicit Euler approximation of the gradients. We demonstrate that the EGA converges to the exact gradients in the limit of infinitely small time steps. Numerical experiments are performed on various case studies, including prototypical ocean-atmosphere dynamics. Results show significant improvements over offline learning, highlighting the potential of end-to-end online learning for hybrid modeling.
In this study, we analyze and compare the performance of state-of-the-art deep reinforcement learning algorithms for solving the supply chain inventory management problem. This complex sequential decision-making problem consists of determining the optimal quantity of products to be produced and shipped across different warehouses over a given time horizon. In particular, we present a mathematical formulation of a two-echelon supply chain environment with stochastic and seasonal demand, which allows managing an arbitrary number of warehouses and product types. Through a rich set of numerical experiments, we compare the performance of different deep reinforcement learning algorithms under various supply chain structures, topologies, demands, capacities, and costs. The results of the experimental plan indicate that deep reinforcement learning algorithms outperform traditional inventory management strategies, such as the static (s, Q)-policy. Furthermore, this study provides detailed insight into the design and development of an open-source software library that provides a customizable environment for solving the supply chain inventory management problem using a wide range of data-driven approaches.
We propose a theoretical framework for formulating language model decoder algorithms with dynamic programming and information theory. With dynamic programming, we lift the design of decoder algorithms from the logit space to the action-state value function space, and show that the decoding algorithms are consequences of optimizing the action-state value functions. Each component in the action-state value function space has an information theoretical interpretation. With the lifting and interpretation, it becomes evident what the decoder algorithm is optimized for, and hence facilitating the arbitration of the tradeoffs in sensibleness, diversity, and attribution.
In addressing control problems such as regulation and tracking through reinforcement learning, it is often required to guarantee that the acquired policy meets essential performance and stability criteria such as a desired settling time and steady-state error prior to deployment. Motivated by this necessity, we present a set of results and a systematic reward shaping procedure that (i) ensures the optimal policy generates trajectories that align with specified control requirements and (ii) allows to assess whether any given policy satisfies them. We validate our approach through comprehensive numerical experiments conducted in two representative environments from OpenAI Gym: the Inverted Pendulum swing-up problem and the Lunar Lander. Utilizing both tabular and deep reinforcement learning methods, our experiments consistently affirm the efficacy of our proposed framework, highlighting its effectiveness in ensuring policy adherence to the prescribed control requirements.
Recent advances in unsupervised learning have highlighted the possibility of learning to reconstruct signals from noisy and incomplete linear measurements alone. These methods play a key role in medical and scientific imaging and sensing, where ground truth data is often scarce or difficult to obtain. However, in practice, measurements are not only noisy and incomplete but also quantized. Here we explore the extreme case of learning from binary observations and provide necessary and sufficient conditions on the number of measurements required for identifying a set of signals from incomplete binary data. Our results are complementary to existing bounds on signal recovery from binary measurements. Furthermore, we introduce a novel self-supervised learning approach, which we name SSBM, that only requires binary data for training. We demonstrate in a series of experiments with real datasets that SSBM performs on par with supervised learning and outperforms sparse reconstruction methods with a fixed wavelet basis by a large margin.
We propose a fundamental theory on ensemble learning that answers the central question: what factors make an ensemble system good or bad? Previous studies used a variant of Fano's inequality of information theory and derived a lower bound of the classification error rate on the basis of the $\textit{accuracy}$ and $\textit{diversity}$ of models. We revisit the original Fano's inequality and argue that the studies did not take into account the information lost when multiple model predictions are combined into a final prediction. To address this issue, we generalize the previous theory to incorporate the information loss, which we name $\textit{combination loss}$. Further, we empirically validate and demonstrate the proposed theory through extensive experiments on actual systems. The theory reveals the strengths and weaknesses of systems on each metric, which will push the theoretical understanding of ensemble learning and give us insights into designing systems.
In the rapidly evolving realm of machine learning, algorithm effectiveness often faces limitations due to data quality and availability. Traditional approaches grapple with data sharing due to legal and privacy concerns. The federated learning framework addresses this challenge. Federated learning is a decentralized approach where model training occurs on client sides, preserving privacy by keeping data localized. Instead of sending raw data to a central server, only model updates are exchanged, enhancing data security. We apply this framework to Sparse Principal Component Analysis (SPCA) in this work. SPCA aims to attain sparse component loadings while maximizing data variance for improved interpretability. Beside the L1 norm regularization term in conventional SPCA, we add a smoothing function to facilitate gradient-based optimization methods. Moreover, in order to improve computational efficiency, we introduce a least squares approximation to original SPCA. This enables analytic solutions on the optimization processes, leading to substantial computational improvements. Within the federated framework, we formulate SPCA as a consensus optimization problem, which can be solved using the Alternating Direction Method of Multipliers (ADMM). Our extensive experiments involve both IID and non-IID random features across various data owners. Results on synthetic and public datasets affirm the efficacy of our federated SPCA approach.
Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
The inductive biases of graph representation learning algorithms are often encoded in the background geometry of their embedding space. In this paper, we show that general directed graphs can be effectively represented by an embedding model that combines three components: a pseudo-Riemannian metric structure, a non-trivial global topology, and a unique likelihood function that explicitly incorporates a preferred direction in embedding space. We demonstrate the representational capabilities of this method by applying it to the task of link prediction on a series of synthetic and real directed graphs from natural language applications and biology. In particular, we show that low-dimensional cylindrical Minkowski and anti-de Sitter spacetimes can produce equal or better graph representations than curved Riemannian manifolds of higher dimensions.