亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Augmented Reality (AR) solutions are providing tools that could improve applications in the medical and industrial fields. Augmentation can provide additional information in training, visualization, and work scenarios, to increase efficiency, reliability, and safety, while improving communication with other devices and systems on the network. Unfortunately, tasks in these fields often require both hands to execute, reducing the variety of input methods suitable to control AR applications. People with certain physical disabilities, where they are not able to use their hands, are also negatively impacted when using these devices. The goal of this work is to provide novel hand-free interfacing methods, using AR technology, in association with AI support approaches to produce an improved Human-Computer interaction solution.

相關內容

 增強現實(Augmented Reality,簡稱 AR),是一種實時地計算攝影機影像的位置及角度并加上相應圖像的技術,這種技術的目標是在屏幕上把虛擬世界套在現實世界并進行互動。

Solving Constrained Horn Clauses (CHCs) is a fundamental challenge behind a wide range of verification and analysis tasks. Data-driven approaches show great promise in improving CHC solving without the painstaking manual effort of creating and tuning various heuristics. However, a large performance gap exists between data-driven CHC solvers and symbolic reasoning-based solvers. In this work, we develop a simple but effective framework, "Chronosymbolic Learning", which unifies symbolic information and numerical data points to solve a CHC system efficiently. We also present a simple instance of Chronosymbolic Learning with a data-driven learner and a BMC-styled reasoner. Despite its great simplicity, experimental results show the efficacy and robustness of our tool. It outperforms state-of-the-art CHC solvers on a dataset consisting of 288 benchmarks, including many instances with non-linear integer arithmetics.

Declarative Distributed Systems (DDSs) are distributed systems grounded in logic programming. Although DDS model-checking is undecidable in general, we detect decidable cases by tweaking the data-source bounds, the message expressiveness, and the channel type.

Continual semantic segmentation aims to learn new classes while maintaining the information from the previous classes. Although prior studies have shown impressive progress in recent years, the fairness concern in the continual semantic segmentation needs to be better addressed. Meanwhile, fairness is one of the most vital factors in deploying the deep learning model, especially in human-related or safety applications. In this paper, we present a novel Fairness Continual Learning approach to the semantic segmentation problem. In particular, under the fairness objective, a new fairness continual learning framework is proposed based on class distributions. Then, a novel Prototypical Contrastive Clustering loss is proposed to address the significant challenges in continual learning, i.e., catastrophic forgetting and background shift. Our proposed loss has also been proven as a novel, generalized learning paradigm of knowledge distillation commonly used in continual learning. Moreover, the proposed Conditional Structural Consistency loss further regularized the structural constraint of the predicted segmentation. Our proposed approach has achieved State-of-the-Art performance on three standard scene understanding benchmarks, i.e., ADE20K, Cityscapes, and Pascal VOC, and promoted the fairness of the segmentation model.

Recently, methods for skeleton-based human activity recognition have been shown to be vulnerable to adversarial attacks. However, these attack methods require either the full knowledge of the victim (i.e. white-box attacks), access to training data (i.e. transfer-based attacks) or frequent model queries (i.e. black-box attacks). All their requirements are highly restrictive, raising the question of how detrimental the vulnerability is. In this paper, we show that the vulnerability indeed exists. To this end, we consider a new attack task: the attacker has no access to the victim model or the training data or labels, where we coin the term hard no-box attack. Specifically, we first learn a motion manifold where we define an adversarial loss to compute a new gradient for the attack, named skeleton-motion-informed (SMI) gradient. Our gradient contains information of the motion dynamics, which is different from existing gradient-based attack methods that compute the loss gradient assuming each dimension in the data is independent. The SMI gradient can augment many gradient-based attack methods, leading to a new family of no-box attack methods. Extensive evaluation and comparison show that our method imposes a real threat to existing classifiers. They also show that the SMI gradient improves the transferability and imperceptibility of adversarial samples in both no-box and transfer-based black-box settings.

As a privacy-preserving method for implementing Vertical Federated Learning, Split Learning has been extensively researched. However, numerous studies have indicated that the privacy-preserving capability of Split Learning is insufficient. In this paper, we primarily focus on label inference attacks in Split Learning under regression setting, which are mainly implemented through the gradient inversion method. To defend against label inference attacks, we propose Random Label Extension (RLE), where labels are extended to obfuscate the label information contained in the gradients, thereby preventing the attacker from utilizing gradients to train an attack model that can infer the original labels. To further minimize the impact on the original task, we propose Model-based adaptive Label Extension (MLE), where original labels are preserved in the extended labels and dominate the training process. The experimental results show that compared to the basic defense methods, our proposed defense methods can significantly reduce the attack model's performance while preserving the original task's performance.

Collaborative filtering (CF) is a widely employed technique that predicts user preferences based on past interactions. Negative sampling plays a vital role in training CF-based models with implicit feedback. In this paper, we propose a novel perspective based on the sampling area to revisit existing sampling methods. We point out that current sampling methods mainly focus on Point-wise or Line-wise sampling, lacking flexibility and leaving a significant portion of the hard sampling area un-explored. To address this limitation, we propose Dimension Independent Mixup for Hard Negative Sampling (DINS), which is the first Area-wise sampling method for training CF-based models. DINS comprises three modules: Hard Boundary Definition, Dimension Independent Mixup, and Multi-hop Pooling. Experiments with real-world datasets on both matrix factorization and graph-based models demonstrate that DINS outperforms other negative sampling methods, establishing its effectiveness and superiority. Our work contributes a new perspective, introduces Area-wise sampling, and presents DINS as a novel approach that achieves state-of-the-art performance for negative sampling. Our implementations are available in PyTorch.

Large Language Models (LLMs) exhibit remarkable fluency and competence across various natural language tasks. However, recent research has highlighted their sensitivity to variations in input prompts. To deploy LLMs in a safe and reliable manner, it is crucial for their outputs to be consistent when prompted with expressions that carry the same meaning or intent. While some existing work has explored how state-of-the-art LLMs address this issue, their evaluations have been confined to assessing lexical equality of single- or multi-word answers, overlooking the consistency of generative text sequences. For a more comprehensive understanding of the consistency of LLMs in open-ended text generation scenarios, we introduce a general measure of semantic consistency, and formulate multiple versions of this metric to evaluate the performance of various LLMs. Our proposal demonstrates significantly higher consistency and stronger correlation with human evaluations of output consistency than traditional metrics based on lexical consistency. Finally, we propose a novel prompting strategy, called Ask-to-Choose (A2C), to enhance semantic consistency. When evaluated for closed-book question answering based on answer variations from the TruthfulQA benchmark, A2C increases accuracy metrics for pretrained and finetuned LLMs by up to 47%, and semantic consistency metrics for instruction-tuned models by up to 7-fold.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.

北京阿比特科技有限公司