亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep reinforcement learning (DRL) provides a new way to generate robot control policy. However, the process of training control policy requires lengthy exploration, resulting in a low sample efficiency of reinforcement learning (RL) in real-world tasks. Both imitation learning (IL) and learning from demonstrations (LfD) improve the training process by using expert demonstrations, but imperfect expert demonstrations can mislead policy improvement. Offline to Online reinforcement learning requires a lot of offline data to initialize the policy, and distribution shift can easily lead to performance degradation during online fine-tuning. To solve the above problems, we propose a learning from demonstrations method named A-SILfD, which treats expert demonstrations as the agent's successful experiences and uses experiences to constrain policy improvement. Furthermore, we prevent performance degradation due to large estimation errors in the Q-function by the ensemble Q-functions. Our experiments show that A-SILfD can significantly improve sample efficiency using a small number of different quality expert demonstrations. In four Mujoco continuous control tasks, A-SILfD can significantly outperform baseline methods after 150,000 steps of online training and is not misled by imperfect expert demonstrations during training.

相關內容

In this paper, we analyze the behavior of existing techniques and design new solutions for the problem of one-shot visual imitation. In this setting, an agent must solve a novel instance of a novel task given just a single visual demonstration. Our analysis reveals that current methods fall short because of three errors: the DAgger problem arising from purely offline training, last centimeter errors in interacting with objects, and mis-fitting to the task context rather than to the actual task. This motivates the design of our modular approach where we a) separate out task inference (what to do) from task execution (how to do it), and b) develop data augmentation and generation techniques to mitigate mis-fitting. The former allows us to leverage hand-crafted motor primitives for task execution which side-steps the DAgger problem and last centimeter errors, while the latter gets the model to focus on the task rather than the task context. Our model gets 100% and 48% success rates on two recent benchmarks, improving upon the current state-of-the-art by absolute 90% and 20% respectively.

Federated Learning (FL) has emerged as a new paradigm for training machine learning models distributively without sacrificing data security and privacy. Learning models on edge devices such as mobile phones is one of the most common use cases for FL. However, Non-identical independent distributed~(non-IID) data in edge devices easily leads to training failures. Especially, over-parameterized machine learning models can easily be over-fitted on such data, hence, resulting in inefficient federated learning and poor model performance. To overcome the over-fitting issue, we proposed an adaptive dynamic pruning approach for FL, which can dynamically slim the model by dropping out unimportant parameters, hence, preventing over-fittings. Since the machine learning model's parameters react differently for different training samples, adaptive dynamic pruning will evaluate the salience of the model's parameter according to the input training sample, and only retain the salient parameter's gradients when doing back-propagation. We performed comprehensive experiments to evaluate our approach. The results show that our approach by removing the redundant parameters in neural networks can significantly reduce the over-fitting issue and greatly improves the training efficiency. In particular, when training the ResNet-32 on CIFAR-10, our approach reduces the communication cost by 57\%. We further demonstrate the inference acceleration capability of the proposed algorithm. Our approach reduces up to 50\% FLOPs inference of DNNs on edge devices while maintaining the model's quality.

Learning diverse skills is one of the main challenges in robotics. To this end, imitation learning approaches have achieved impressive results. These methods require explicitly labeled datasets or assume consistent skill execution to enable learning and active control of individual behaviors, which limits their applicability. In this work, we propose a cooperative adversarial method for obtaining single versatile policies with controllable skill sets from unlabeled datasets containing diverse state transition patterns by maximizing their discriminability. Moreover, we show that by utilizing unsupervised skill discovery in the generative adversarial imitation learning framework, novel and useful skills emerge with successful task fulfillment. Finally, the obtained versatile policies are tested on an agile quadruped robot called Solo 8 and present faithful replications of diverse skills encoded in the demonstrations.

State of the art reinforcement learning has enabled training agents on tasks of ever increasing complexity. However, the current paradigm tends to favor training agents from scratch on every new task or on collections of tasks with a view towards generalizing to novel task configurations. The former suffers from poor data efficiency while the latter is difficult when test tasks are out-of-distribution. Agents that can effectively transfer their knowledge about the world pose a potential solution to these issues. In this paper, we investigate transfer learning in the context of model-based agents. Specifically, we aim to understand when exactly environment models have an advantage and why. We find that a model-based approach outperforms controlled model-free baselines for transfer learning. Through ablations, we show that both the policy and dynamics model learnt through exploration matter for successful transfer. We demonstrate our results across three domains which vary in their requirements for transfer: in-distribution procedural (Crafter), in-distribution identical (RoboDesk), and out-of-distribution (Meta-World). Our results show that intrinsic exploration combined with environment models present a viable direction towards agents that are self-supervised and able to generalize to novel reward functions.

Goal-conditioned reinforcement learning (GCRL) refers to learning general-purpose skills which aim to reach diverse goals. In particular, offline GCRL only requires purely pre-collected datasets to perform training tasks without additional interactions with the environment. Although offline GCRL has become increasingly prevalent and many previous works have demonstrated its empirical success, the theoretical understanding of efficient offline GCRL algorithms is not well established, especially when the state space is huge and the offline dataset only covers the policy we aim to learn. In this paper, we propose a novel provably efficient algorithm (the sample complexity is $\tilde{O}({\rm poly}(1/\epsilon))$ where $\epsilon$ is the desired suboptimality of the learned policy) with general function approximation. Our algorithm only requires nearly minimal assumptions of the dataset (single-policy concentrability) and the function class (realizability). Moreover, our algorithm consists of two uninterleaved optimization steps, which we refer to as $V$-learning and policy learning, and is computationally stable since it does not involve minimax optimization. To the best of our knowledge, this is the first algorithm with general function approximation and single-policy concentrability that is both statistically efficient and computationally stable.

Process design is a creative task that is currently performed manually by engineers. Artificial intelligence provides new potential to facilitate process design. Specifically, reinforcement learning (RL) has shown some success in automating process design by integrating data-driven models that learn to build process flowsheets with process simulation in an iterative design process. However, one major challenge in the learning process is that the RL agent demands numerous process simulations in rigorous process simulators, thereby requiring long simulation times and expensive computational power. Therefore, typically short-cut simulation methods are employed to accelerate the learning process. Short-cut methods can, however, lead to inaccurate results. We thus propose to utilize transfer learning for process design with RL in combination with rigorous simulation methods. Transfer learning is an established approach from machine learning that stores knowledge gained while solving one problem and reuses this information on a different target domain. We integrate transfer learning in our RL framework for process design and apply it to an illustrative case study comprising equilibrium reactions, azeotropic separation, and recycles, our method can design economically feasible flowsheets with stable interaction with DWSIM. Our results show that transfer learning enables RL to economically design feasible flowsheets with DWSIM, resulting in a flowsheet with an 8% higher revenue. And the learning time can be reduced by a factor of 2.

We investigate the extent to which offline demonstration data can improve online learning. It is natural to expect some improvement, but the question is how, and by how much? We show that the degree of improvement must depend on the quality of the demonstration data. To generate portable insights, we focus on Thompson sampling (TS) applied to a multi-armed bandit as a prototypical online learning algorithm and model. The demonstration data is generated by an expert with a given competence level, a notion we introduce. We propose an informed TS algorithm that utilizes the demonstration data in a coherent way through Bayes' rule and derive a prior-dependent Bayesian regret bound. This offers insight into how pretraining can greatly improve online performance and how the degree of improvement increases with the expert's competence level. We also develop a practical, approximate informed TS algorithm through Bayesian bootstrapping and show substantial empirical regret reduction through experiments.

The co-adaptation of robots has been a long-standing research endeavour with the goal of adapting both body and behaviour of a system for a given task, inspired by the natural evolution of animals. Co-adaptation has the potential to eliminate costly manual hardware engineering as well as improve the performance of systems. The standard approach to co-adaptation is to use a reward function for optimizing behaviour and morphology. However, defining and constructing such reward functions is notoriously difficult and often a significant engineering effort. This paper introduces a new viewpoint on the co-adaptation problem, which we call co-imitation: finding a morphology and a policy that allow an imitator to closely match the behaviour of a demonstrator. To this end we propose a co-imitation methodology for adapting behaviour and morphology by matching state distributions of the demonstrator. Specifically, we focus on the challenging scenario with mismatched state- and action-spaces between both agents. We find that co-imitation increases behaviour similarity across a variety of tasks and settings, and demonstrate co-imitation by transferring human walking, jogging and kicking skills onto a simulated humanoid.

With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.

The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions.

北京阿比特科技有限公司