亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models (LLM) have proven to be effective at automated program repair (APR). However, using LLMs can be costly, with companies invoicing users by the number of tokens. In this paper, we propose CigaR, the first LLM-based APR tool that focuses on minimizing the repair cost. CigaR works in two major steps: generating a first plausible patch and multiplying plausible patches. CigaR optimizes the prompts and the prompt setting to maximize the information given to LLMs using the smallest possible number of tokens. Our experiments on 429 bugs from the widely used Defects4J and HumanEval-Java datasets shows that CigaR reduces the token cost by 73%. On average, CigaR spends 127k tokens per bug while the baseline uses 467k tokens per bug. On the subset of bugs that are fixed by both, CigaR spends 20k per bug while the baseline uses 608k tokens, a cost saving of 96%. Our extensive experiments show that CigaR is a cost-effective LLM-based program repair tool that uses a low number of tokens to automatically generate patches.

相關內容

With the prosperity of large language models (LLMs), powerful LLM-based intelligent agents have been developed to provide customized services with a set of user-defined tools. State-of-the-art methods for constructing LLM agents adopt trained LLMs and further fine-tune them on data for the agent task. However, we show that such methods are vulnerable to our proposed backdoor attacks named BadAgent on various agent tasks, where a backdoor can be embedded by fine-tuning on the backdoor data. At test time, the attacker can manipulate the deployed LLM agents to execute harmful operations by showing the trigger in the agent input or environment. To our surprise, our proposed attack methods are extremely robust even after fine-tuning on trustworthy data. Though backdoor attacks have been studied extensively in natural language processing, to the best of our knowledge, we could be the first to study them on LLM agents that are more dangerous due to the permission to use external tools. Our work demonstrates the clear risk of constructing LLM agents based on untrusted LLMs or data. Our code is public at //github.com/DPamK/BadAgent

Using large language models (LLMs) to assist psychological counseling is a significant but challenging task at present. Attempts have been made on improving empathetic conversations or acting as effective assistants in the treatment with LLMs. However, the existing datasets lack consulting knowledge, resulting in LLMs lacking professional consulting competence. Moreover, how to automatically evaluate multi-turn dialogues within the counseling process remains an understudied area. To bridge the gap, we propose CPsyCoun, a report-based multi-turn dialogue reconstruction and evaluation framework for Chinese psychological counseling. To fully exploit psychological counseling reports, a two-phase approach is devised to construct high-quality dialogues while a comprehensive evaluation benchmark is developed for the effective automatic evaluation of multi-turn psychological consultations. Competitive experimental results demonstrate the effectiveness of our proposed framework in psychological counseling. We open-source the datasets and model for future research at //github.com/CAS-SIAT-XinHai/CPsyCoun

Large language models (LLMs) have shown amazing capabilities in knowledge memorization and present. However, when it comes to domain-specific knowledge and downstream tasks like medical, general LLMs are often unable to give precise answers. In addition, when people want LLMs to answer classification questions, they usually go through instruction tuning first, however, LLMs do not always give a direct index of the categorization after instruction tuning. In this paper, we proposed LlamaCare, a fine-tuned medical language model, and Extended Classification Integration(ECI), a module to handle classification problems of LLMs. Our contributions are : (i) We fine-tuned a large language model of medical knowledge with very low carbon emissions and achieved similar performance with ChatGPT by a 24G GPU. (ii) We solved the problem of redundant categorical answers and improved the performance of LLMs by proposing a new module called Extended Classification Integration. (iii) We released our processed data for one-shot and few-shot training for some benchmarks such as PubMedQA and USMLE 1-3 step. Our method achieves a close effect with the state-of-the-art model in benchmarks while costing lower GPU resources compared to LLMs with the same quantity of parameters. Our models, codes, and datasets can be found in //github.com/Stephen-SMJ/LLamaCare

Large language models (LLMs) with Chain-of-thought (CoT) have recently emerged as a powerful technique for eliciting reasoning to improve various downstream tasks. As most research mainly focuses on English, with few explorations in a multilingual context, the question of how reliable this reasoning capability is in different languages is still open. To address it directly, we study multilingual reasoning consistency across multiple languages, using popular open-source LLMs. First, we compile the first large-scale multilingual math reasoning dataset, mCoT-MATH, covering eleven diverse languages. Then, we introduce multilingual CoT instruction tuning to boost reasoning capability across languages, thereby improving model consistency. While existing LLMs show substantial variation across the languages we consider, and especially low performance for lesser resourced languages, our 7B parameter model mCoT achieves impressive consistency across languages, and superior or comparable performance to close- and open-source models even of much larger sizes.

Pretrained language models (PLMs) have become remarkably adept at task and language generalization. Nonetheless, they often fail when faced with unseen languages. In this work, we present LinguAlchemy, a regularization method that incorporates various linguistic information covering typological, geographical, and phylogenetic features to align PLMs representation to the corresponding linguistic information on each language. Our LinguAlchemy significantly improves the performance of mBERT and XLM-R on low-resource languages in multiple downstream tasks such as intent classification, news classification, and semantic relatedness compared to fully finetuned models and displaying a high degree of unseen language generalization. We further introduce AlchemyScale and AlchemyTune, extension of LinguAlchemy which adjusts the linguistic regularization weights automatically, alleviating the need for hyperparameter search.

Large language models (LLMs) have shown impressive capabilities in adapting to various tasks when provided with task-specific instructions. However, LLMs using standard decoding strategies often struggle with deviations from the inputs. Intuitively, compliant LLM outputs should reflect the information present in the input, which can be measured by point-wise mutual information (PMI) scores. Therefore, we propose Diver, a novel approach that enhances LLM Decoding through span-level PMI verification. During inference, Diver first identifies divergence steps that may lead to multiple candidate spans. Subsequently, it calculates the PMI scores by assessing the log-likelihood gains of the input if the candidate spans are generated. Finally, the optimal span is selected based on the PMI re-ranked output distributions. We evaluate our method across various downstream tasks, and empirical results demonstrate that Diver significantly outperforms existing decoding methods in both performance and versatility.

Large language models~(LLMs) have recently demonstrated promising performance in many tasks. However, the high storage and computational cost of LLMs has become a challenge for deploying LLMs. Weight quantization has been widely used for model compression, which can reduce both storage and computational cost. Most existing weight quantization methods for LLMs use a rank-one codebook for quantization, which results in substantial accuracy loss when the compression ratio is high. In this paper, we propose a novel weight quantization method, called low-rank codebook based quantization~(LCQ), for LLMs. LCQ adopts a low-rank codebook, the rank of which can be larger than one, for quantization. Experiments show that LCQ can achieve better accuracy than existing methods with a negligibly extra storage cost.

Sign language recognition (SLR) has long been plagued by insufficient model representation capabilities. Although current pre-training approaches have alleviated this dilemma to some extent and yielded promising performance by employing various pretext tasks on sign pose data, these methods still suffer from two primary limitations: 1) Explicit motion information is usually disregarded in previous pretext tasks, leading to partial information loss and limited representation capability. 2) Previous methods focus on the local context of a sign pose sequence, without incorporating the guidance of the global meaning of lexical signs. To this end, we propose a Motion-Aware masked autoencoder with Semantic Alignment (MASA) that integrates rich motion cues and global semantic information in a self-supervised learning paradigm for SLR. Our framework contains two crucial components, i.e., a motion-aware masked autoencoder (MA) and a momentum semantic alignment module (SA). Specifically, in MA, we introduce an autoencoder architecture with a motion-aware masked strategy to reconstruct motion residuals of masked frames, thereby explicitly exploring dynamic motion cues among sign pose sequences. Moreover, in SA, we embed our framework with global semantic awareness by aligning the embeddings of different augmented samples from the input sequence in the shared latent space. In this way, our framework can simultaneously learn local motion cues and global semantic features for comprehensive sign language representation. Furthermore, we conduct extensive experiments to validate the effectiveness of our method, achieving new state-of-the-art performance on four public benchmarks.

Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.

Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.

北京阿比特科技有限公司