We investigate winner determination for two popular proportional representation systems: the Monroe and Chamberlin-Courant (abbrv. CC) systems. Our study focuses on (nearly) single-peaked resp. single-crossing preferences. We show that for single-crossing approval preferences, winner determination of the Monroe rule is polynomial, and for both rules, winner determination mostly admits FPT algorithms with respect to the number of voters to delete to obtain single-peaked or single-crossing preferences. Our results answer some complexity questions from the literature [18, 28, 21].
Data has transformative potential to empower people with Intellectual and Developmental Disabilities (IDD). However, conventional data visualizations often rely on complex cognitive processes, and existing approaches for day-to-day analysis scenarios fail to consider neurodivergent capabilities, creating barriers for people with IDD to access data and leading to even further marginalization. We argue that visualizations could be an equalizer for people with IDD to participate in data-driven conversations. Drawing on preliminary research findings and our experiences working with people with IDD and their data, we introduce and expand on the concept of cognitively accessible visualizations, unpack its meaning and roles in increasing IDD individuals' access to data, and discuss two immediate research objectives. Specifically, we argue that cognitively accessible visualizations should support people with IDD in personal data storytelling for effective self-advocacy and self-expression, and balance novelty and familiarity in data design to accommodate cognitive diversity and promote inclusivity.
CNNs and Transformers have their own advantages and both have been widely used for dense prediction in multi-task learning (MTL). Most of the current studies on MTL solely rely on CNN or Transformer. In this work, we present a novel MTL model by combining both merits of deformable CNN and query-based Transformer with shared gating for multi-task learning of dense prediction. This combination may offer a simple and efficient solution owing to its powerful and flexible task-specific learning and advantages of lower cost, less complexity and smaller parameters than the traditional MTL methods. We introduce deformable mixer Transformer with gating (DeMTG), a simple and effective encoder-decoder architecture up-to-date that incorporates the convolution and attention mechanism in a unified network for MTL. It is exquisitely designed to use advantages of each block, and provide deformable and comprehensive features for all tasks from local and global perspective. First, the deformable mixer encoder contains two types of operators: the channel-aware mixing operator leveraged to allow communication among different channels, and the spatial-aware deformable operator with deformable convolution applied to efficiently sample more informative spatial locations. Second, the task-aware gating transformer decoder is used to perform the task-specific predictions, in which task interaction block integrated with self-attention is applied to capture task interaction features, and the task query block integrated with gating attention is leveraged to select corresponding task-specific features. Further, the experiment results demonstrate that the proposed DeMTG uses fewer GFLOPs and significantly outperforms current Transformer-based and CNN-based competitive models on a variety of metrics on three dense prediction datasets. Our code and models are available at //github.com/yangyangxu0/DeMTG.
The emergence of Tiny Machine Learning (TinyML) has positively revolutionized the field of Artificial Intelligence by promoting the joint design of resource-constrained IoT hardware devices and their learning-based software architectures. TinyML carries an essential role within the fourth and fifth industrial revolutions in helping societies, economies, and individuals employ effective AI-infused computing technologies (e.g., smart cities, automotive, and medical robotics). Given its multidisciplinary nature, the field of TinyML has been approached from many different angles: this comprehensive survey wishes to provide an up-to-date overview focused on all the learning algorithms within TinyML-based solutions. The survey is based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodological flow, allowing for a systematic and complete literature survey. In particular, firstly we will examine the three different workflows for implementing a TinyML-based system, i.e., ML-oriented, HW-oriented, and co-design. Secondly, we propose a taxonomy that covers the learning panorama under the TinyML lens, examining in detail the different families of model optimization and design, as well as the state-of-the-art learning techniques. Thirdly, this survey will present the distinct features of hardware devices and software tools that represent the current state-of-the-art for TinyML intelligent edge applications. Finally, we discuss the challenges and future directions.
By integrating recent advances in large language models (LLMs) and generative models into the emerging semantic communication (SC) paradigm, in this article we put forward to a novel framework of language-oriented semantic communication (LSC). In LSC, machines communicate using human language messages that can be interpreted and manipulated via natural language processing (NLP) techniques for SC efficiency. To demonstrate LSC's potential, we introduce three innovative algorithms: 1) semantic source coding (SSC) which compresses a text prompt into its key head words capturing the prompt's syntactic essence while maintaining their appearance order to keep the prompt's context; 2) semantic channel coding (SCC) that improves robustness against errors by substituting head words with their lenghthier synonyms; and 3) semantic knowledge distillation (SKD) that produces listener-customized prompts via in-context learning the listener's language style. In a communication task for progressive text-to-image generation, the proposed methods achieve higher perceptual similarities with fewer transmissions while enhancing robustness in noisy communication channels.
Recently, Large Language Models (LLMs) have achieved amazing zero-shot learning performance over a variety of Natural Language Processing (NLP) tasks, especially for text generative tasks. Yet, the large size of LLMs often leads to the high computational cost of model training and online deployment. In our work, we present ALTER, a system that effectively builds the multi-tAsk Learners with mixTure-of-task-adaptERs upon small language models (with <1B parameters) to address multiple NLP tasks simultaneously, capturing the commonalities and differences between tasks, in order to support domain-specific applications. Specifically, in ALTER, we propose the Mixture-of-Task-Adapters (MTA) module as an extension to the transformer architecture for the underlying model to capture the intra-task and inter-task knowledge. A two-stage training method is further proposed to optimize the collaboration between adapters at a small computational cost. Experimental results over a mixture of NLP tasks show that our proposed MTA architecture and the two-stage training method achieve good performance. Based on ALTER, we have also produced MTA-equipped language models for various domains.
This paper introduces a new neural-network-based approach, namely In-Context Operator Networks (ICON), to simultaneously learn operators from the prompted data and apply it to new questions during the inference stage, without any weight update. Existing methods are limited to using a neural network to approximate a specific equation solution or a specific operator, requiring retraining when switching to a new problem with different equations. By training a single neural network as an operator learner, we can not only get rid of retraining (even fine-tuning) the neural network for new problems, but also leverage the commonalities shared across operators so that only a few demos in the prompt are needed when learning a new operator. Our numerical results show the neural network's capability as a few-shot operator learner for a diversified type of differential equation problems, including forward and inverse problems of ordinary differential equations (ODEs), partial differential equations (PDEs), and mean-field control (MFC) problems, and also show that it can generalize its learning capability to operators beyond the training distribution.
This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in //github.com/zjunlp/AutoKG.
This paper presents a comprehensive and practical guide for practitioners and end-users working with Large Language Models (LLMs) in their downstream natural language processing (NLP) tasks. We provide discussions and insights into the usage of LLMs from the perspectives of models, data, and downstream tasks. Firstly, we offer an introduction and brief summary of current GPT- and BERT-style LLMs. Then, we discuss the influence of pre-training data, training data, and test data. Most importantly, we provide a detailed discussion about the use and non-use cases of large language models for various natural language processing tasks, such as knowledge-intensive tasks, traditional natural language understanding tasks, natural language generation tasks, emergent abilities, and considerations for specific tasks.We present various use cases and non-use cases to illustrate the practical applications and limitations of LLMs in real-world scenarios. We also try to understand the importance of data and the specific challenges associated with each NLP task. Furthermore, we explore the impact of spurious biases on LLMs and delve into other essential considerations, such as efficiency, cost, and latency, to ensure a comprehensive understanding of deploying LLMs in practice. This comprehensive guide aims to provide researchers and practitioners with valuable insights and best practices for working with LLMs, thereby enabling the successful implementation of these models in a wide range of NLP tasks. A curated list of practical guide resources of LLMs, regularly updated, can be found at \url{//github.com/Mooler0410/LLMsPracticalGuide}.
Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.
Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.