亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Social disruption occurs when a policy creates or destroys many network connections between agents. It is a costly side effect of many interventions and so a growing empirical literature recommends measuring and accounting for social disruption when evaluating the welfare impact of a policy. However, there is currently little work characterizing what can actually be learned about social disruption from data in practice. In this paper, we consider the problem of identifying social disruption in a research design that is popular in the literature. We provide two sets of identification results. First, we show that social disruption is not generally point identified, but informative bounds can be constructed using the eigenvalues of the network adjacency matrices observed by the researcher. Second, we show that point identification follows from a theoretically motivated monotonicity condition, and we derive a closed form representation. We apply our methods in two empirical illustrations and find large policy effects that otherwise might be missed by alternatives in the literature.

相關內容

We show how a neural network can be trained on individual intrusive listening test scores to predict a distribution of scores for each pair of reference and coded input stereo or binaural signals. We nickname this method the Generative Machine Listener (GML), as it is capable of generating an arbitrary amount of simulated listening test data. Compared to a baseline system using regression over mean scores, we observe lower outlier ratios (OR) for the mean score predictions, and obtain easy access to the prediction of confidence intervals (CI). The introduction of data augmentation techniques from the image domain results in a significant increase in CI prediction accuracy as well as Pearson and Spearman rank correlation of mean scores.

Diffusion models have successfully been applied to generative tasks in various continuous domains. However, applying diffusion to discrete categorical data remains a non-trivial task. Moreover, generation in continuous domains often requires clipping in practice, which motivates the need for a theoretical framework for adapting diffusion to constrained domains. Inspired by the mirror Langevin algorithm for the constrained sampling problem, in this theoretical report we propose Mirror Diffusion Models (MDMs). We demonstrate MDMs in the context of simplex diffusion and propose natural extensions to popular domains such as image and text generation.

We propose a general stochastic framework for modelling repeated auctions in the Real Time Bidding (RTB) ecosystem using point processes. The flexibility of the framework allows a variety of auction scenarios including configuration of information provided to player, determination of auction winner and quantification of utility gained from each auctions. We propose theoretical results on how this formulation of process can be approximated to a Poisson point process, which enables the analyzer to take advantage of well-established properties. Under this framework, we specify the player's optimal strategy under various scenarios. We also emphasize that it is critical to consider the joint distribution of utility and market condition instead of estimating the marginal distributions independently.

Traditional problems in computational geometry involve aspects that are both discrete and continuous. One such example is nearest-neighbor searching, where the input is discrete, but the result depends on distances, which vary continuously. In many real-world applications of geometric data structures, it is assumed that query results are continuous, free of jump discontinuities. This is at odds with many modern data structures in computational geometry, which employ approximations to achieve efficiency, but these approximations often suffer from discontinuities. In this paper, we present a general method for transforming an approximate but discontinuous data structure into one that produces a smooth approximation, while matching the asymptotic space efficiencies of the original. We achieve this by adapting an approach called the partition-of-unity method, which smoothly blends multiple local approximations into a single smooth global approximation. We illustrate the use of this technique in a specific application of approximating the distance to the boundary of a convex polytope in $\mathbb{R}^d$ from any point in its interior. We begin by developing a novel data structure that efficiently computes an absolute $\varepsilon$-approximation to this query in time $O(\log (1/\varepsilon))$ using $O(1/\varepsilon^{d/2})$ storage space. Then, we proceed to apply the proposed partition-of-unity blending to guarantee the smoothness of the approximate distance field, establishing optimal asymptotic bounds on the norms of its gradient and Hessian.

Deterministic model predictive control (MPC), while powerful, is often insufficient for effectively controlling autonomous systems in the real-world. Factors such as environmental noise and model error can cause deviations from the expected nominal performance. Robust MPC algorithms aim to bridge this gap between deterministic and uncertain control. However, these methods are often excessively difficult to tune for robustness due to the nonlinear and non-intuitive effects that controller parameters have on performance. To address this challenge, a unifying perspective on differentiable optimization for control is presented, which enables derivation of a general, differentiable tube-based MPC algorithm. The proposed approach facilitates the automatic and real-time tuning of robust controllers in the presence of large uncertainties and disturbances.

IP blacklists are widely used to increase network security by preventing communications with peers that have been marked as malicious. There are several commercial offerings as well as several free-of-charge blacklists maintained by volunteers on the web. Despite their wide adoption, the effectiveness of the different IP blacklists in real-world scenarios is still not clear. In this paper, we conduct a large-scale network monitoring study which provides insightful findings regarding the effectiveness of blacklists. The results collected over several hundred thousand IP hosts belonging to three distinct large production networks highlight that blacklists are often tuned for precision, with the result that many malicious activities, such as scanning, are completely undetected. The proposed instrumentation approach to detect IP scanning and suspicious activities is implemented with home-grown and open-source software. Our tools enable the creation of blacklists without the security risks posed by the deployment of honeypots.

Depth estimation is one of the essential tasks to be addressed when creating mobile autonomous systems. While monocular depth estimation methods have improved in recent times, depth completion provides more accurate and reliable depth maps by additionally using sparse depth information from other sensors such as LiDAR. However, current methods are specifically trained for a single LiDAR sensor. As the scanning pattern differs between sensors, every new sensor would require re-training a specialized depth completion model, which is computationally inefficient and not flexible. Therefore, we propose to dynamically adapt the depth completion model to the used sensor type enabling LiDAR adaptive depth completion. Specifically, we propose a meta depth completion network that uses data patterns derived from the data to learn a task network to alter weights of the main depth completion network to solve a given depth completion task effectively. The method demonstrates a strong capability to work on multiple LiDAR scanning patterns and can also generalize to scanning patterns that are unseen during training. While using a single model, our method yields significantly better results than a non-adaptive baseline trained on different LiDAR patterns. It outperforms LiDAR-specific expert models for very sparse cases. These advantages allow flexible deployment of a single depth completion model on different sensors, which could also prove valuable to process the input of nascent LiDAR technology with adaptive instead of fixed scanning patterns.

We propose a combinatorial optimisation model called Limited Query Graph Connectivity Test. We consider a graph whose edges have two possible states (On/Off). The edges' states are hidden initially. We could query an edge to reveal its state. Given a source s and a destination t, we aim to test s-t connectivity by identifying either a path (consisting of only On edges) or a cut (consisting of only Off edges). We are limited to B queries, after which we stop regardless of whether graph connectivity is established. We aim to design a query policy that minimizes the expected number of queries. Our model is mainly motivated by a cyber security use case where we need to establish whether an attack path exists in a network, between a source and a destination. Edge query is resolved by manual effort from the IT admin, which is the motivation behind query minimization. Our model is highly related to monotone Stochastic Boolean Function Evaluation (SBFE). There are two existing exact algorithms for SBFE that are prohibitively expensive. We propose a significantly more scalable exact algorithm. While previous exact algorithms only scale for trivial graphs (i.e., past works experimented on at most 20 edges), we empirically demonstrate that our algorithm is scalable for a wide range of much larger practical graphs (i.e., Windows domain network graphs with tens of thousands of edges). We propose three heuristics. Our best-performing heuristic is via reducing the search horizon of the exact algorithm. The other two are via reinforcement learning (RL) and Monte Carlo tree search (MCTS). We also derive an anytime algorithm for computing the performance lower bound. Experimentally, we show that all our heuristics are near optimal. The exact algorithm based heuristic outperforms all, surpassing RL, MCTS and 8 existing heuristics ported from SBFE and related literature.

The shortest path problem in graphs is fundamental to AI. Nearly all variants of the problem and relevant algorithms that solve them ignore edge-weight computation time and its common relation to weight uncertainty. This implies that taking these factors into consideration can potentially lead to a performance boost in relevant applications. Recently, a generalized framework for weighted directed graphs was suggested, where edge-weight can be computed (estimated) multiple times, at increasing accuracy and run-time expense. We build on this framework to introduce the problem of finding the tightest admissible shortest path (TASP); a path with the tightest suboptimality bound on the optimal cost. This is a generalization of the shortest path problem to bounded uncertainty, where edge-weight uncertainty can be traded for computational cost. We present a complete algorithm for solving TASP, with guarantees on solution quality. Empirical evaluation supports the effectiveness of this approach.

Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.

北京阿比特科技有限公司