亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated analytics relies on the collection of accurate statistics about distributed users with a suitable guarantee. In this paper, we show how a strong $(\epsilon, \delta)$-privacy guarantee can be achieved for the fundamental problem of histogram generation in a federated setting, via a highly practical sampling-based procedure. Given such histograms, related problems such as heavy hitters and quantiles can be answered with provable error and privacy guarantees. Our experimental results demonstrate that this sample-and-threshold approach is both accurate and scalable.

相關內容

As multi-agent systems proliferate and share more user data, new approaches are needed to protect sensitive data while still enabling system operation. To address this need, this paper presents a private multi-agent LQ control framework. Agents' state trajectories can be sensitive and we therefore protect them using differential privacy. We quantify the impact of privacy along three dimensions: the amount of information shared under privacy, the control-theoretic cost of privacy, and the tradeoffs between privacy and performance. These analyses are done in conventional control-theoretic terms, which we use to develop guidelines for calibrating privacy as a function of system parameters. Numerical results indicate that system performance remains within desirable ranges, even under strict privacy requirements.

Tensor completion aims at filling the missing or unobserved entries based on partially observed tensors. However, utilization of the observed tensors often raises serious privacy concerns in many practical scenarios. To address this issue, we propose a solid and unified framework that contains several approaches for applying differential privacy to the two most widely used tensor decomposition methods: i) CANDECOMP/PARAFAC~(CP) and ii) Tucker decompositions. For each approach, we establish a rigorous privacy guarantee and meanwhile evaluate the privacy-accuracy trade-off. Experiments on synthetic and real-world datasets demonstrate that our proposal achieves high accuracy for tensor completion while ensuring strong privacy protections.

Differentially private data release receives rising attention in machine learning community. Recently, an algorithm called DPMix is proposed to release high-dimensional data after a random mixup of degree $m$ with differential privacy. However, limited theoretical justifications are given about the "sweet spot $m$" phenomenon, and directly applying DPMix to image data suffers from severe loss of utility. In this paper, we revisit random mixup with recent progress on differential privacy. In theory, equipped with Gaussian Differential Privacy with Poisson subsampling, a tight closed form analysis is presented that enables a quantitative characterization of optimal mixup $m^*$ based on linear regression models. In practice, mixup of features, extracted by handcraft or pre-trained neural networks such as self-supervised learning without labels, is adopted to significantly boost the performance with privacy protection. We name it as Differentially Private Feature Mixup (DPFMix). Experiments on MNIST, CIFAR10/100 are conducted to demonstrate its remarkable utility improvement and protection against attacks.

Federated learning (FL) is a collaborative learning approach that has gained much attention due to its inherent privacy preservation capabilities. However, advanced adversarial attacks such as membership inference and model memorization can still make FL vulnerable and potentially leak sensitive private data. Literature shows a few attempts to alleviate this problem by using global (GDP) and local differential privacy (LDP). Compared to GDP, LDP approaches are gaining more popularity due to stronger privacy notions and native support for data distribution. However, DP approaches assume that the server that aggregates the models, to be honest (run the FL protocol honestly) or semi-honest (run the FL protocol honestly while also trying to learn as much information possible), making such approaches unreliable for real-world settings. In real-world industrial environments (e.g. healthcare), the distributed entities (e.g. hospitals) are already composed of locally running machine learning models (e.g. high-performing deep neural networks on local health records). Existing approaches do not provide a scalable mechanism to utilize such settings for privacy-preserving FL. This paper proposes a new local differentially private FL (named LDPFL) protocol for industrial settings. LDPFL avoids the requirement of an honest or a semi-honest server and provides better performance while enforcing stronger privacy levels compared to existing approaches. Our experimental evaluation of LDPFL shows high FL model performance (up to ~98%) under a small privacy budget (e.g. epsilon = 0.5) in comparison to existing methods.

Firms and statistical agencies that publish aggregate data face practical and legal requirements to protect the privacy of individuals. Increasingly, these organizations meet these standards by using publication mechanisms which satisfy differential privacy. We consider the problem of choosing such a mechanism so as to maximize the value of its output to end users. We show that this is equivalent to a constrained information design problem, and characterize its solution. Moreover, by introducing a new order on information structures and showing that it ranks them by their usefulness to agents with supermodular payoffs, we show that the simple geometric mechanism is optimal whenever data users face supermodular decision problems.

Large-scale machine learning systems often involve data distributed across a collection of users. Federated optimization algorithms leverage this structure by communicating model updates to a central server, rather than entire datasets. In this paper, we study stochastic optimization algorithms for a personalized federated learning setting involving local and global models subject to user-level (joint) differential privacy. While learning a private global model induces a cost of privacy, local learning is perfectly private. We show that coordinating local learning with private centralized learning yields a generically useful and improved tradeoff between accuracy and privacy. We illustrate our theoretical results with experiments on synthetic and real-world datasets.

Train machine learning models on sensitive user data has raised increasing privacy concerns in many areas. Federated learning is a popular approach for privacy protection that collects the local gradient information instead of real data. One way to achieve a strict privacy guarantee is to apply local differential privacy into federated learning. However, previous works do not give a practical solution due to three issues. First, the noisy data is close to its original value with high probability, increasing the risk of information exposure. Second, a large variance is introduced to the estimated average, causing poor accuracy. Last, the privacy budget explodes due to the high dimensionality of weights in deep learning models. In this paper, we proposed a novel design of local differential privacy mechanism for federated learning to address the abovementioned issues. It is capable of making the data more distinct from its original value and introducing lower variance. Moreover, the proposed mechanism bypasses the curse of dimensionality by splitting and shuffling model updates. A series of empirical evaluations on three commonly used datasets, MNIST, Fashion-MNIST and CIFAR-10, demonstrate that our solution can not only achieve superior deep learning performance but also provide a strong privacy guarantee at the same time.

Federated learning has been showing as a promising approach in paving the last mile of artificial intelligence, due to its great potential of solving the data isolation problem in large scale machine learning. Particularly, with consideration of the heterogeneity in practical edge computing systems, asynchronous edge-cloud collaboration based federated learning can further improve the learning efficiency by significantly reducing the straggler effect. Despite no raw data sharing, the open architecture and extensive collaborations of asynchronous federated learning (AFL) still give some malicious participants great opportunities to infer other parties' training data, thus leading to serious concerns of privacy. To achieve a rigorous privacy guarantee with high utility, we investigate to secure asynchronous edge-cloud collaborative federated learning with differential privacy, focusing on the impacts of differential privacy on model convergence of AFL. Formally, we give the first analysis on the model convergence of AFL under DP and propose a multi-stage adjustable private algorithm (MAPA) to improve the trade-off between model utility and privacy by dynamically adjusting both the noise scale and the learning rate. Through extensive simulations and real-world experiments with an edge-could testbed, we demonstrate that MAPA significantly improves both the model accuracy and convergence speed with sufficient privacy guarantee.

Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

北京阿比特科技有限公司