亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To estimate causal effects accurately, adjusting covariates is one of the important steps in observational study. When all covariates are observed, the covariates can be adjusted, and an unbiased estimator for causal effects can be obtained. In this situation, the propensity score has the central role to estimate the causal effects. Recently, some causal estimands, the target population of causal effects estimation, are considered which depend on the "true" propensity score. A point to note that an interested estimands might have some bias if a propensity score model was misspecified. In this paper, we consider a multiply robust estimator for the propensity score. In brief, we prepare some candidate models, and construct an estimating equation including the candidate models at once. Some theoretical properties are proved, and we consider application examples for propensity score estimations when the average treatment effects for the overlap population is central interest.

相關內容

In recent years, Graph Neural Networks have reported outstanding performance in tasks like community detection, molecule classification and link prediction. However, the black-box nature of these models prevents their application in domains like health and finance, where understanding the models' decisions is essential. Counterfactual Explanations (CE) provide these understandings through examples. Moreover, the literature on CE is flourishing with novel explanation methods which are tailored to graph learning. In this survey, we analyse the existing Graph Counterfactual Explanation methods, by providing the reader with an organisation of the literature according to a uniform formal notation for definitions, datasets, and metrics, thus, simplifying potential comparisons w.r.t to the method advantages and disadvantages. We discussed seven methods and sixteen synthetic and real datasets providing details on the possible generation strategies. We highlight the most common evaluation strategies and formalise nine of the metrics used in the literature. We first introduce the evaluation framework GRETEL and how it is possible to extend and use it while providing a further dimension of comparison encompassing reproducibility aspects. Finally, we provide a discussion on how counterfactual explanation interplays with privacy and fairness, before delving into open challenges and future works.

This work provides a theoretical analysis for optimally solving the pose estimation problem using total least squares for vector observations from landmark features, which is central to applications involving simultaneous localization and mapping. First, the optimization process is formulated with observation vectors extracted from point-cloud features. Then, error-covariance expressions are derived. The attitude and position estimates obtained via the derived optimization process are proven to reach the bounds defined by the Cram\'er-Rao lower bound under the small-angle approximation of attitude errors. A fully populated observation noise-covariance matrix is assumed as the weight in the cost function to cover the most general case of the sensor uncertainty. This includes more generic correlations in the errors than previous cases involving an isotropic noise assumption. The proposed solution is verified using Monte Carlo simulations and an experiment with an actual LIDAR to validate the error-covariance analysis.

Two-stage randomized experiments are becoming an increasingly popular experimental design for causal inference when the outcome of one unit may be affected by the treatment assignments of other units in the same cluster. In this paper, we provide a methodological framework for general tools of statistical inference and power analysis for two-stage randomized experiments. Under the randomization-based framework, we consider the estimation of a new direct effect of interest as well as the average direct and spillover effects studied in the literature. We provide unbiased estimators of these causal quantities and their conservative variance estimators in a general setting. Using these results, we then develop hypothesis testing procedures and derive sample size formulas. We theoretically compare the two-stage randomized design with the completely randomized and cluster randomized designs, which represent two limiting designs. Finally, we conduct simulation studies to evaluate the empirical performance of our sample size formulas. For empirical illustration, the proposed methodology is applied to the randomized evaluation of the Indian national health insurance program. An open-source software package is available for implementing the proposed methodology.

High-dimensional matrix-variate time series data are becoming widely available in many scientific fields, such as economics, biology, and meteorology. To achieve significant dimension reduction while preserving the intrinsic matrix structure and temporal dynamics in such data, Wang et al. (2017) proposed a matrix factor model that is shown to provide effective analysis. In this paper, we establish a general framework for incorporating domain or prior knowledge in the matrix factor model through linear constraints. The proposed framework is shown to be useful in achieving parsimonious parameterization, facilitating interpretation of the latent matrix factor, and identifying specific factors of interest. Fully utilizing the prior-knowledge-induced constraints results in more efficient and accurate modeling, inference, dimension reduction as well as a clear and better interpretation of the results. In this paper, constrained, multi-term, and partially constrained factor models for matrix-variate time series are developed, with efficient estimation procedures and their asymptotic properties. We show that the convergence rates of the constrained factor loading matrices are much faster than those of the conventional matrix factor analysis under many situations. Simulation studies are carried out to demonstrate the finite-sample performance of the proposed method and its associated asymptotic properties. We illustrate the proposed model with three applications, where the constrained matrix-factor models outperform their unconstrained counterparts in the power of variance explanation under the out-of-sample 10-fold cross-validation setting.

This paper considers the estimation and inference of the low-rank components in high-dimensional matrix-variate factor models, where each dimension of the matrix-variates ($p \times q$) is comparable to or greater than the number of observations ($T$). We propose an estimation method called $\alpha$-PCA that preserves the matrix structure and aggregates mean and contemporary covariance through a hyper-parameter $\alpha$. We develop an inferential theory, establishing consistency, the rate of convergence, and the limiting distributions, under general conditions that allow for correlations across time, rows, or columns of the noise. We show both theoretical and empirical methods of choosing the best $\alpha$, depending on the use-case criteria. Simulation results demonstrate the adequacy of the asymptotic results in approximating the finite sample properties. The $\alpha$-PCA compares favorably with the existing ones. Finally, we illustrate its applications with a real numeric data set and two real image data sets. In all applications, the proposed estimation procedure outperforms previous methods in the power of variance explanation using out-of-sample 10-fold cross-validation.

In this paper we integrate the isotonic regression with Stone's cross-validation-based method to estimate discrete infinitely supported distribution. We prove that the estimator is strongly consistent, derive its rate of convergence for any underlying distribution, and for one-dimensional case we derive Marshal-type inequality for cumulative distribution function of the estimator. Also, we construct the asymptotically correct conservative global confidence band for the estimator. It is shown that, first, the estimator performs good even for small sized data sets, second, the estimator outperforms in the case of non-monotone underlying distribution, and, third, it performs almost as good as Grenander estimator when the true distribution is isotonic. Therefore, the new estimator provides a trade-off between goodness-of-fit, monotonicity and quality of probabilistic forecast. We apply the estimator to the time-to-onset data of visceral leishmaniasis in Brazil collected from 2007 to 2014.

With advancements in computer vision taking place day by day, recently a lot of light is being shed on activity recognition. With the range for real-world applications utilizing this field of study increasing across a multitude of industries such as security and healthcare, it becomes crucial for businesses to distinguish which machine learning methods perform better than others in the area. This paper strives to aid in this predicament i.e. building upon previous related work, it employs both classical and ensemble approaches on rich pose estimation (OpenPose) and HAR datasets. Making use of appropriate metrics to evaluate the performance for each model, the results show that overall, random forest yields the highest accuracy in classifying ADLs. Relatively all the models have excellent performance across both datasets, except for logistic regression and AdaBoost perform poorly in the HAR one. With the limitations of this paper also discussed in the end, the scope for further research is vast, which can use this paper as a base in aims of producing better results.

A popular method for variance reduction in observational causal inference is propensity-based trimming, the practice of removing units with extreme propensities from the sample. This practice has theoretical grounding when the data are homoscedastic and the propensity model is parametric (Yang and Ding, 2018; Crump et al. 2009), but in modern settings where heteroscedastic data are analyzed with non-parametric models, existing theory fails to support current practice. In this work, we address this challenge by developing new methods and theory for sample trimming. Our contributions are three-fold: first, we describe novel procedures for selecting which units to trim. Our procedures differ from previous work in that we trim not only units with small propensities, but also units with extreme conditional variances. Second, we give new theoretical guarantees for inference after trimming. In particular, we show how to perform inference on the trimmed subpopulation without requiring that our regressions converge at parametric rates. Instead, we make only fourth-root rate assumptions like those in the double machine learning literature. This result applies to conventional propensity-based trimming as well and thus may be of independent interest. Finally, we propose a bootstrap-based method for constructing simultaneously valid confidence intervals for multiple trimmed sub-populations, which are valuable for navigating the trade-off between sample size and variance reduction inherent in trimming. We validate our methods in simulation, on the 2007-2008 National Health and Nutrition Examination Survey, and on a semi-synthetic Medicare dataset and find promising results in all settings.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.

北京阿比特科技有限公司