亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Label noise is a common issue in real-world datasets that inevitably impacts the generalization of models. This study focuses on robust classification tasks where the label noise is instance-dependent. Estimating the transition matrix accurately in this task is challenging, and methods based on sample selection often exhibit confirmation bias to varying degrees. Sparse over-parameterized training (SOP) has been theoretically effective in estimating and recovering label noise, offering a novel solution for noise-label learning. However, this study empirically observes and verifies a technical flaw of SOP: the lack of coordination between model predictions and noise recovery leads to increased generalization error. To address this, we propose a method called Coordinated Sparse Recovery (CSR). CSR introduces a collaboration matrix and confidence weights to coordinate model predictions and noise recovery, reducing error leakage. Based on CSR, this study designs a joint sample selection strategy and constructs a comprehensive and powerful learning framework called CSR+. CSR+ significantly reduces confirmation bias, especially for datasets with more classes and a high proportion of instance-specific noise. Experimental results on simulated and real-world noisy datasets demonstrate that both CSR and CSR+ achieve outstanding performance compared to methods at the same level.

相關內容

Fairness is a critical objective in policy design and algorithmic decision-making. Identifying the causal pathways of unfairness requires knowledge of the underlying structural causal model, which may be incomplete or unavailable. This limits the practicality of causal fairness analysis in complex or low-knowledge domains. To mitigate this practicality gap, we advocate for developing efficient causal discovery methods for fairness applications. To this end, we introduce local discovery for direct discrimination (LD3): a polynomial-time algorithm that recovers structural evidence of direct discrimination. LD3 performs a linear number of conditional independence tests with respect to variable set size. Moreover, we propose a graphical criterion for identifying the weighted controlled direct effect (CDE), a qualitative measure of direct discrimination. We prove that this criterion is satisfied by the knowledge returned by LD3, increasing the accessibility of the weighted CDE as a causal fairness measure. Taking liver transplant allocation as a case study, we highlight the potential impact of LD3 for modeling fairness in complex decision systems. Results on real-world data demonstrate more plausible causal relations than baselines, which took 197x to 5870x longer to execute.

We study the problem of maximum likelihood (ML) estimation for statistical models defined by reflexive polytopes. Our focus is on the maximum likelihood degree of these models as an algebraic measure of complexity of the corresponding optimization problem. We compute the ML degrees of all 4319 classes of three-dimensional reflexive polytopes, and observe some surprising behavior in terms of the presence of gaps between ML degrees and degrees of the associated toric varieties. We interpret these drops in the context of discriminants and prove formulas for the ML degree for families of reflexive polytopes, including the hypercube and its dual, the cross polytope, in arbitrary dimension. In particular, we determine a family of embeddings for the $d$-cube that implies ML degree one. Finally, we discuss generalized constructions of families of reflexive polytopes in terms of their ML degrees.

Accelerating the inference of large language models (LLMs) is an important challenge in artificial intelligence. This paper introduces distributed speculative inference (DSI), a novel distributed inference algorithm that is provably faster than speculative inference (SI) [leviathan2023fast, chen2023accelerating, miao2023specinfer] and traditional autoregressive inference (non-SI). Like other SI algorithms, DSI works on frozen LLMs, requiring no training or architectural modifications, and it preserves the target distribution. Prior studies on SI have demonstrated empirical speedups (compared to non-SI) but require a fast and accurate drafter LLM. In practice, off-the-shelf LLMs often do not have matching drafters that are sufficiently fast and accurate. We show a gap: SI gets slower than non-SI when using slower or less accurate drafters. We close this gap by proving that DSI is faster than both SI and non-SI given any drafters. By orchestrating multiple instances of the target and drafters, DSI is not only faster than SI but also supports LLMs that cannot be accelerated with SI. Our simulations show speedups of off-the-shelf LLMs in realistic settings: DSI is 1.29-1.92x faster than SI.

In many real-world causal inference applications, the primary outcomes (labels) are often partially missing, especially if they are expensive or difficult to collect. If the missingness depends on covariates (i.e., missingness is not completely at random), analyses based on fully observed samples alone may be biased. Incorporating surrogates, which are fully observed post-treatment variables related to the primary outcome, can improve estimation in this case. In this paper, we study the role of surrogates in estimating continuous treatment effects and propose a doubly robust method to efficiently incorporate surrogates in the analysis, which uses both labeled and unlabeled data and does not suffer from the above selection bias problem. Importantly, we establish the asymptotic normality of the proposed estimator and show possible improvements on the variance compared with methods that solely use labeled data. Extensive simulations show our methods enjoy appealing empirical performance.

Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.

Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

Co-evolving time series appears in a multitude of applications such as environmental monitoring, financial analysis, and smart transportation. This paper aims to address the following challenges, including (C1) how to incorporate explicit relationship networks of the time series; (C2) how to model the implicit relationship of the temporal dynamics. We propose a novel model called Network of Tensor Time Series, which is comprised of two modules, including Tensor Graph Convolutional Network (TGCN) and Tensor Recurrent Neural Network (TRNN). TGCN tackles the first challenge by generalizing Graph Convolutional Network (GCN) for flat graphs to tensor graphs, which captures the synergy between multiple graphs associated with the tensors. TRNN leverages tensor decomposition to model the implicit relationships among co-evolving time series. The experimental results on five real-world datasets demonstrate the efficacy of the proposed method.

Attention Model has now become an important concept in neural networks that has been researched within diverse application domains. This survey provides a structured and comprehensive overview of the developments in modeling attention. In particular, we propose a taxonomy which groups existing techniques into coherent categories. We review the different neural architectures in which attention has been incorporated, and also show how attention improves interpretability of neural models. Finally, we discuss some applications in which modeling attention has a significant impact. We hope this survey will provide a succinct introduction to attention models and guide practitioners while developing approaches for their applications.

北京阿比特科技有限公司