In the realm of security applications, biometric authentication systems play a crucial role, yet one often encounters challenges concerning privacy and security while developing one. One of the most fundamental challenges lies in avoiding storing biometrics directly in the storage but still achieving decently high accuracy. Addressing this issue, we contribute to both artificial intelligence and engineering fields. We introduce an innovative image distortion technique that effectively renders facial images unrecognizable to the eye while maintaining their identifiability by neural network models. From the theoretical perspective, we explore how reliable state-of-the-art biometrics recognition neural networks are by checking the maximal degree of image distortion, which leaves the predicted identity unchanged. On the other hand, applying this technique demonstrates a practical solution to the engineering challenge of balancing security, precision, and performance in biometric authentication systems. Through experimenting on the widely used datasets, we assess the effectiveness of our method in preserving AI feature representation and distorting relative to conventional metrics. We also compare our method with previously used approaches.
Object rearrangement, a fundamental challenge in robotics, demands versatile strategies to handle diverse objects, configurations, and functional needs. To achieve this, the AI robot needs to learn functional rearrangement priors in order to specify precise goals that meet the functional requirements. Previous methods typically learn such priors from either laborious human annotations or manually designed heuristics, which limits scalability and generalization. In this work, we propose a novel approach that leverages large models to distill functional rearrangement priors. Specifically, our approach collects diverse arrangement examples using both LLMs and VLMs and then distills the examples into a diffusion model. During test time, the learned diffusion model is conditioned on the initial configuration and guides the positioning of objects to meet functional requirements. In this manner, we create a handshaking point that combines the strengths of conditional generative models and large models. Extensive experiments on multiple domains, including real-world scenarios, demonstrate the effectiveness of our approach in generating compatible goals for object rearrangement tasks, significantly outperforming baseline methods.
Channel pruning is widely accepted to accelerate modern convolutional neural networks (CNNs). The resulting pruned model benefits from its immediate deployment on general-purpose software and hardware resources. However, its large pruning granularity, specifically at the unit of a convolution filter, often leads to undesirable accuracy drops due to the inflexibility of deciding how and where to introduce sparsity to the CNNs. In this paper, we propose REPrune, a novel channel pruning technique that emulates kernel pruning, fully exploiting the finer but structured granularity. REPrune identifies similar kernels within each channel using agglomerative clustering. Then, it selects filters that maximize the incorporation of kernel representatives while optimizing the maximum cluster coverage problem. By integrating with a simultaneous training-pruning paradigm, REPrune promotes efficient, progressive pruning throughout training CNNs, avoiding the conventional train-prune-finetune sequence. Experimental results highlight that REPrune performs better in computer vision tasks than existing methods, effectively achieving a balance between acceleration ratio and performance retention.
The escalating threat of adversarial attacks on deep learning models, particularly in security-critical fields, has underscored the need for robust deep learning systems. Conventional robustness evaluations have relied on adversarial accuracy, which measures a model's performance under a specific perturbation intensity. However, this singular metric does not fully encapsulate the overall resilience of a model against varying degrees of perturbation. To address this gap, we propose a new metric termed adversarial hypervolume, assessing the robustness of deep learning models comprehensively over a range of perturbation intensities from a multi-objective optimization standpoint. This metric allows for an in-depth comparison of defense mechanisms and recognizes the trivial improvements in robustness afforded by less potent defensive strategies. Additionally, we adopt a novel training algorithm that enhances adversarial robustness uniformly across various perturbation intensities, in contrast to methods narrowly focused on optimizing adversarial accuracy. Our extensive empirical studies validate the effectiveness of the adversarial hypervolume metric, demonstrating its ability to reveal subtle differences in robustness that adversarial accuracy overlooks. This research contributes a new measure of robustness and establishes a standard for assessing and benchmarking the resilience of current and future defensive models against adversarial threats.
Federated Learning (FL) plays a critical role in distributed systems. In these systems, data privacy and confidentiality hold paramount importance, particularly within edge-based data processing systems such as IoT devices deployed in smart homes. FL emerges as a privacy-enforcing sub-domain of machine learning that enables model training on client devices, eliminating the necessity to share private data with a central server. While existing research has predominantly addressed challenges pertaining to data heterogeneity, there remains a current gap in addressing issues such as varying device capabilities and efficient communication. These unaddressed issues raise a number of implications in resource-constrained environments. In particular, the practical implementation of FL-based IoT or edge systems is extremely inefficient. In this paper, we propose "Resource-Efficient Federated Training Framework for Heterogeneous and Resource-Constrained Environments (REFT)," a novel approach specifically devised to address these challenges in resource-limited devices. Our proposed method uses Variable Pruning to optimize resource utilization by adapting pruning strategies to the computational capabilities of each client. Furthermore, our proposed REFT technique employs knowledge distillation to minimize the need for continuous bidirectional client-server communication. This achieves a significant reduction in communication bandwidth, thereby enhancing the overall resource efficiency. We conduct experiments for an image classification task, and the results demonstrate the effectiveness of our approach in resource-limited settings. Our technique not only preserves data privacy and performance standards but also accommodates heterogeneous model architectures, facilitating the participation of a broader array of diverse client devices in the training process, all while consuming minimal bandwidth.
Sequential recommendation aims to estimate the dynamic user preferences and sequential dependencies among historical user behaviors. Although Transformer-based models have proven to be effective for sequential recommendation, they suffer from the inference inefficiency problem stemming from the quadratic computational complexity of attention operators, especially for long-range behavior sequences. Inspired by the recent success of state space models (SSMs), we propose Mamba4Rec, which is the first work to explore the potential of selective SSMs for efficient sequential recommendation. Built upon the basic Mamba block which is a selective SSM with an efficient hardware-aware parallel algorithm, we incorporate a series of sequential modeling techniques to further promote the model performance and meanwhile maintain the inference efficiency. Experiments on two public datasets demonstrate that Mamba4Rec is able to well address the effectiveness-efficiency dilemma, and defeat both RNN- and attention-based baselines in terms of both effectiveness and efficiency.
The field of pharmaceutical development and therapeutic application both face substantial challenges. Therapeutic domain calls for more treatment alternatives while numerous promising pre-clinical drugs fail in clinical trails. One of the reasons is the inadequacy of Cross-drug Response Evaluation (CRE) during the late stage of drug development. Although in-silico CRE models offer a solution to this problem, existing methodologies are either limited to early development stages or lack the capacity for a comprehensive CRE analysis. Herein, we introduce a novel computational model named DeepCRE and present the potential of DeepCRE in advancing therapeutic discovery and development. DeepCRE outperforms the existing best models by achieving an average performance improvement of 17.7\% in patient-level CRE, and a 5-fold increase in indication-level CRE. Furthermore, DeepCRE has identified six drug candidates that show significantly greater effectiveness than a comparator set of two approved drug in 5/8 colorectal cancer (CRC) organoids. This highlights DeepCRE's ability to identify a collection of drug candidates with superior therapeutic effects, underscoring its potential to revolutionize the field of therapeutic development.
Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.
As a primary means of information acquisition, information retrieval (IR) systems, such as search engines, have integrated themselves into our daily lives. These systems also serve as components of dialogue, question-answering, and recommender systems. The trajectory of IR has evolved dynamically from its origins in term-based methods to its integration with advanced neural models. While the neural models excel at capturing complex contextual signals and semantic nuances, thereby reshaping the IR landscape, they still face challenges such as data scarcity, interpretability, and the generation of contextually plausible yet potentially inaccurate responses. This evolution requires a combination of both traditional methods (such as term-based sparse retrieval methods with rapid response) and modern neural architectures (such as language models with powerful language understanding capacity). Meanwhile, the emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has revolutionized natural language processing due to their remarkable language understanding, generation, generalization, and reasoning abilities. Consequently, recent research has sought to leverage LLMs to improve IR systems. Given the rapid evolution of this research trajectory, it is necessary to consolidate existing methodologies and provide nuanced insights through a comprehensive overview. In this survey, we delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers. Additionally, we explore promising directions within this expanding field.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.