亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As knowledge graph has the potential to bridge the gap between commonsense knowledge and reasoning over actionable capabilities of mobile robotic platforms, incorporating knowledge graph into robotic system attracted increasing attention in recent years. Previously, graph visualization has been used wildly by developers to make sense of knowledge representations. However, due to lacking the link between abstract knowledge of the real-world environment and the robot's actions, transitional visualization tools are incompatible for expert-user to understand, test, supervise and modify the graph-based reasoning system with the embodiment of the robots. Therefore, we developed an interface which enables robotic experts to send commands to the robot in natural language, then interface visualizes the procedures of the robot mapping the command to the functions for querying in the commonsense knowledge database, links the result to the real world instances in a 3D map and demonstrate the execution of the robot from the first-person perspective of the robot. After 3 weeks of usage of the system by robotic experts in their daily development, some feedback was collected, which provides insight for designing such systems.

相關內容

通過學習、實(shi)踐或探索所獲(huo)得的認識、判斷(duan)或技能。

Socially Assistive Robots (SARs) are robots that are designed to replicate the role of a caregiver, coach, or teacher, providing emotional, cognitive, and social cues to support a specific group. SARs are becoming increasingly prevalent, especially in elderly care. Effective communication, both explicit and implicit, is a critical aspect of human-robot interaction involving SARs. Intent communication is necessary for SARs to engage in effective communication with humans. Biometrics can provide crucial information about a person's identity or emotions. By linking these biometric signals to the communication of intent, SARs can gain a profound understanding of their users and tailor their interactions accordingly. The development of reliable and robust biometric sensing and analysis systems is critical to the success of SARs. In this work, we focus on four different aspects to evaluate the communication of intent involving SARs, existing works, and our outlook on future works and applications.

Recently, end-to-end trained models for multiple-choice commonsense question answering (QA) have delivered promising results. However, such question-answering systems cannot be directly applied in real-world scenarios where answer candidates are not provided. Hence, a new benchmark challenge set for open-ended commonsense reasoning (OpenCSR) has been recently released, which contains natural science questions without any predefined choices. On the OpenCSR challenge set, many questions require implicit multi-hop reasoning and have a large decision space, reflecting the difficult nature of this task. Existing work on OpenCSR sorely focuses on improving the retrieval process, which extracts relevant factual sentences from a textual knowledge base, leaving the important and non-trivial reasoning task outside the scope. In this work, we extend the scope to include a reasoner that constructs a question-dependent open knowledge graph based on retrieved supporting facts and employs a sequential subgraph reasoning process to predict the answer. The subgraph can be seen as a concise and compact graphical explanation of the prediction. Experiments on two OpenCSR datasets show that the proposed model achieves great performance on benchmark OpenCSR datasets.

Underwater images are altered by the physical characteristics of the medium through which light rays pass before reaching the optical sensor. Scattering and wavelength-dependent absorption significantly modify the captured colors depending on the distance of observed elements to the image plane. In this paper, we aim to recover an image of the scene as if the water had no effect on light propagation. We introduce SUCRe, a new method that exploits the scene's 3D structure for underwater color restoration. By following points in multiple images and tracking their intensities at different distances to the sensor, we constrain the optimization of the parameters in an underwater image formation model and retrieve unattenuated pixel intensities. We conduct extensive quantitative and qualitative analyses of our approach in a variety of scenarios ranging from natural light to deep-sea environments using three underwater datasets acquired from real-world scenarios and one synthetic dataset. We also compare the performance of the proposed approach with that of a wide range of existing state-of-the-art methods. The results demonstrate a consistent benefit of exploiting multiple views across a spectrum of objective metrics. Our code is publicly available at //github.com/clementinboittiaux/sucre.

Currently, inter-organizational process collaboration (IOPC) has been widely used in the design and development of distributed systems that support business process execution. Blockchain-based IOPC can establish trusted data sharing among participants, attracting more and more attention. The core of such study is to translate the graphical model (e.g., BPMN) into program code called smart contract that can be executed in the blockchain environment. In this context, a proper smart contract plays a vital role in the correct implementation of block-chain-based IOPC. In fact, the quality of graphical model affects the smart con-tract generation. Problematic models (e.g., deadlock) will result in incorrect contracts (causing unexpected behaviours). To avoid this undesired implementation, this paper explores to generate smart contracts by using the verified formal model as input instead of graphical model. Specifically, we introduce a prototype framework that supports the automatic generation of smart contracts, providing an end-to-end solution from modeling, verification, translation to implementation. One of the cores of this framework is to provide a CSP#-based formalization for the BPMN collaboration model from the perspective of message interaction. This formalization provides precise execution semantics and model verification for graphical models, and a verified formal model for smart contract generation. Another novelty is that it introduces a syntax tree-based translation algorithm to directly map the formal model into a smart contract. The required formalism, verification and translation techniques are transparent to users without imposing additional burdens. Finally, a set of experiments shows the effectiveness of the framework.

In this paper we study multi-robot path planning for persistent monitoring tasks. We consider the case where robots have a limited battery capacity with a discharge time $D$. We represent the areas to be monitored as the vertices of a weighted graph. For each vertex, there is a constraint on the maximum allowable time between robot visits, called the latency. The objective is to find the minimum number of robots that can satisfy these latency constraints while also ensuring that the robots periodically charge at a recharging depot. The decision version of this problem is known to be PSPACE-complete. We present a $O(\frac{\log D}{\log \log D}\log \rho)$ approximation algorithm for the problem where $\rho$ is the ratio of the maximum and the minimum latency constraints. We also present an orienteering based heuristic to solve the problem and show empirically that it typically provides higher quality solutions than the approximation algorithm. We extend our results to provide an algorithm for the problem of minimizing the maximum weighted latency given a fixed number of robots. We evaluate our algorithms on large problem instances in a patrolling scenario and in a wildfire monitoring application. We also compare the algorithms with an existing solver on benchmark instances.

Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering and recommendation systems, etc. According to the graph types, the existing KGR models can be roughly divided into three categories, \textit{i.e.,} static models, temporal models, and multi-modal models. The early works in this domain mainly focus on static KGR and tend to directly apply general knowledge graph embedding models to the reasoning task. However, these models are not suitable for more complex but practical tasks, such as inductive static KGR, temporal KGR, and multi-modal KGR. To this end, multiple works have been developed recently, but no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the preliminaries, summaries of KGR models, and typical datasets are introduced and discussed consequently. Moreover, we discuss the challenges and potential opportunities. The corresponding open-source repository is shared on GitHub: //github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

Existing Collaborative Filtering (CF) methods are mostly designed based on the idea of matching, i.e., by learning user and item embeddings from data using shallow or deep models, they try to capture the associative relevance patterns in data, so that a user embedding can be matched with relevant item embeddings using designed or learned similarity functions. However, as a cognition rather than a perception intelligent task, recommendation requires not only the ability of pattern recognition and matching from data, but also the ability of cognitive reasoning in data. In this paper, we propose to advance Collaborative Filtering (CF) to Collaborative Reasoning (CR), which means that each user knows part of the reasoning space, and they collaborate for reasoning in the space to estimate preferences for each other. Technically, we propose a Neural Collaborative Reasoning (NCR) framework to bridge learning and reasoning. Specifically, we integrate the power of representation learning and logical reasoning, where representations capture similarity patterns in data from perceptual perspectives, and logic facilitates cognitive reasoning for informed decision making. An important challenge, however, is to bridge differentiable neural networks and symbolic reasoning in a shared architecture for optimization and inference. To solve the problem, we propose a modularized reasoning architecture, which learns logical operations such as AND ($\wedge$), OR ($\vee$) and NOT ($\neg$) as neural modules for implication reasoning ($\rightarrow$). In this way, logical expressions can be equivalently organized as neural networks, so that logical reasoning and prediction can be conducted in a continuous space. Experiments on real-world datasets verified the advantages of our framework compared with both shallow, deep and reasoning models.

To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司