亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many new methodologies for the control of large-scale multi-agent systems are based on macroscopic representations of the emerging systemdynamics, in the form of continuum approximations of large ensembles. These techniques, that are typically developed in the limit case of an infinite number of agents, are usually validated only through numerical simulations. In this paper, we introduce a mixed reality set-up for testing swarm robotics techniques, focusing on the macroscopic collective motion of robotic swarms. This hybrid apparatus combines both real differential drive robots and virtual agents to create a heterogeneous swarm of tunable size. We also extend continuification-based control methods for swarms to higher dimensions, and assess experimentally their validity in the new platform. Our study demonstrates the effectiveness of the platform for conducting large-scale swarm robotics experiments, and it contributes new theoretical insights into control algorithms exploiting continuification approaches.

相關內容

Despite the exceptional performance of multi-modal large language models (MLLMs), their deployment requires substantial computational resources. Once malicious users induce high energy consumption and latency time (energy-latency cost), it will exhaust computational resources and harm availability of service. In this paper, we investigate this vulnerability for MLLMs, particularly image-based and video-based ones, and aim to induce high energy-latency cost during inference by crafting an imperceptible perturbation. We find that high energy-latency cost can be manipulated by maximizing the length of generated sequences, which motivates us to propose verbose samples, including verbose images and videos. Concretely, two modality non-specific losses are proposed, including a loss to delay end-of-sequence (EOS) token and an uncertainty loss to increase the uncertainty over each generated token. In addition, improving diversity is important to encourage longer responses by increasing the complexity, which inspires the following modality specific loss. For verbose images, a token diversity loss is proposed to promote diverse hidden states. For verbose videos, a frame feature diversity loss is proposed to increase the feature diversity among frames. To balance these losses, we propose a temporal weight adjustment algorithm. Experiments demonstrate that our verbose samples can largely extend the length of generated sequences.

Spiking neural networks drawing inspiration from biological constraints of the brain promise an energy-efficient paradigm for artificial intelligence. However, challenges exist in identifying guiding principles to train these networks in a robust fashion. In addition, training becomes an even more difficult problem when incorporating biological constraints of excitatory and inhibitory connections. In this work, we identify several key factors, such as low initial firing rates and diverse inhibitory spiking patterns, that determine the overall ability to train spiking networks with various ratios of excitatory to inhibitory neurons on AI-relevant datasets. The results indicate networks with the biologically realistic 80:20 excitatory:inhibitory balance can reliably train at low activity levels and in noisy environments. Additionally, the Van Rossum distance, a measure of spike train synchrony, provides insight into the importance of inhibitory neurons to increase network robustness to noise. This work supports further biologically-informed large-scale networks and energy efficient hardware implementations.

This paper presents a framework that can interpret humans' navigation commands containing temporal elements and directly translate their natural language instructions into robot motion planning. Central to our framework is utilizing Large Language Models (LLMs). To enhance the reliability of LLMs in the framework and improve user experience, we propose methods to resolve the ambiguity in natural language instructions and capture user preferences. The process begins with an ambiguity classifier, identifying potential uncertainties in the instructions. Ambiguous statements trigger a GPT-4-based mechanism that generates clarifying questions, incorporating user responses for disambiguation. Also, the framework assesses and records user preferences for non-ambiguous instructions, enhancing future interactions. The last part of this process is the translation of disambiguated instructions into a robot motion plan using Linear Temporal Logic. This paper details the development of this framework and the evaluation of its performance in various test scenarios.

Stochastic versions of the alternating direction method of multiplier (ADMM) and its variants play a key role in many modern large-scale machine learning problems. In this work, we introduce a unified algorithmic framework called generalized stochastic ADMM and investigate their continuous-time analysis. The generalized framework widely includes many stochastic ADMM variants such as standard, linearized and gradient-based ADMM. Our continuous-time analysis provides us with new insights into stochastic ADMM and variants, and we rigorously prove that under some proper scaling, the trajectory of stochastic ADMM weakly converges to the solution of a stochastic differential equation with small noise. Our analysis also provides a theoretical explanation of why the relaxation parameter should be chosen between 0 and 2.

Autonomous and intelligent systems (AIS) facilitate a wide range of beneficial applications across a variety of different domains. However, technical characteristics such as unpredictability and lack of transparency, as well as potential unintended consequences, pose considerable challenges to the current governance infrastructure. Furthermore, the speed of development and deployment of applications outpaces the ability of existing governance institutions to put in place effective ethical-legal oversight. New approaches for agile, distributed and multilevel governance are needed. This work presents a practical framework for multilevel governance of AIS. The framework enables mapping actors onto six levels of decision-making including the international, national and organizational levels. Furthermore, it offers the ability to identify and evolve existing tools or create new tools for guiding the behavior of actors within the levels. Governance mechanisms enable actors to shape and enforce regulations and other tools, which when complemented with good practices contribute to effective and comprehensive governance.

The emergence of WebAssembly allows attackers to hide the malicious functionalities of JavaScript malware in cross-language interoperations, termed JavaScript-WebAssembly multilingual malware (JWMM). However, existing anti-virus solutions based on static program analysis are still limited to monolingual code. As a result, their detection effectiveness decreases significantly against JWMM. The detection of JWMM is challenging due to the complex interoperations and semantic diversity between JavaScript and WebAssembly. To bridge this gap, we present JWBinder, the first technique aimed at enhancing the static detection of JWMM. JWBinder performs a language-specific data-flow analysis to capture the cross-language interoperations and then characterizes the functionalities of JWMM through a unified high-level structure called Inter-language Program Dependency Graph. The extensive evaluation on one of the most representative real-world anti-virus platforms, VirusTotal, shows that \system effectively enhances anti-virus systems from various vendors and increases the overall successful detection rate against JWMM from 49.1\% to 86.2\%. Additionally, we assess the side effects and runtime overhead of JWBinder, corroborating its practical viability in real-world applications.

This work initiates the study of a beyond-diagonal reconfigurable intelligent surface (BD-RIS)-aided transmitter architecture for integrated sensing and communication (ISAC) in the millimeter-wave (mmWave) frequency band. Deploying BD-RIS at the transmitter side not only alleviates the need for extensive fully digital radio frequency (RF) chains but also enhances both communication and sensing performance. These benefits are facilitated by the additional design flexibility introduced by the fully-connected scattering matrix of BD-RIS. To achieve the aforementioned benefits, in this work, we propose an efficient two-stage algorithm to design the digital beamforming of the transmitter and the scattering matrix of the BD-RIS with the aim of jointly maximizing the sum rate for multiple communication users and minimizing the largest eigenvalue of the Cramer-Rao bound (CRB) matrix for multiple sensing targets. Numerical results show that the transmitter-side BD-RIS-aided mmWave ISAC outperforms the conventional diagonal-RIS-aided ones in both communication and sensing performance.

Today, most methods for image understanding tasks rely on feed-forward neural networks. While this approach has allowed for empirical accuracy, efficiency, and task adaptation via fine-tuning, it also comes with fundamental disadvantages. Existing networks often struggle to generalize across different datasets, even on the same task. By design, these networks ultimately reason about high-dimensional scene features, which are challenging to analyze. This is true especially when attempting to predict 3D information based on 2D images. We propose to recast 3D multi-object tracking from RGB cameras as an \emph{Inverse Rendering (IR)} problem, by optimizing via a differentiable rendering pipeline over the latent space of pre-trained 3D object representations and retrieve the latents that best represent object instances in a given input image. To this end, we optimize an image loss over generative latent spaces that inherently disentangle shape and appearance properties. We investigate not only an alternate take on tracking but our method also enables examining the generated objects, reasoning about failure situations, and resolving ambiguous cases. We validate the generalization and scaling capabilities of our method by learning the generative prior exclusively from synthetic data and assessing camera-based 3D tracking on the nuScenes and Waymo datasets. Both these datasets are completely unseen to our method and do not require fine-tuning. Videos and code are available at //light.princeton.edu/inverse-rendering-tracking/.

Real-time semantic segmentation is a crucial research for real-world applications. However, many methods lay particular emphasis on reducing the computational complexity and model size, while largely sacrificing the accuracy. To tackle this problem, we propose a parallel inference network customized for semantic segmentation tasks to achieve a good trade-off between speed and accuracy. We employ a shallow backbone to ensure real-time speed, and propose three core components to compensate for the reduced model capacity to improve accuracy. Specifically, we first design a dual-pyramidal path architecture (Multi-level Feature Aggregation Module, MFAM) to aggregate multi-level features from the encoder to each scale, providing hierarchical clues for subsequent spatial alignment and corresponding in-network inference. Then, we build Recursive Alignment Module (RAM) by combining the flow-based alignment module with recursive upsampling architecture for accurate spatial alignment between multi-scale feature maps with half the computational complexity of the straightforward alignment method. Finally, we perform independent parallel inference on the aligned features to obtain multi-scale scores, and adaptively fuse them through an attention-based Adaptive Scores Fusion Module (ASFM) so that the final prediction can favor objects of multiple scales. Our framework shows a better balance between speed and accuracy than state-of-the-art real-time methods on Cityscapes and CamVid datasets. We also conducted systematic ablation studies to gain insight into our motivation and architectural design. Code is available at: //github.com/Yanhua-Zhang/MFARANet.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司