亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The ethics of automated vehicles (AV) has received a great amount of attention in recent years, specifically in regard to their decisional policies in accident situations in which human harm is a likely consequence. After a discussion about the pertinence and cogency of the term 'artificial moral agent' to describe AVs that would accomplish these sorts of decisions, and starting from the assumption that human harm is unavoidable in some situations, a strategy for AV decision making is proposed using only pre-defined parameters to characterize the risk of possible accidents and also integrating the Ethical Valence Theory, which paints AV decision-making as a type of claim mitigation, into multiple possible decision rules to determine the most suitable action given the specific environment and decision context. The goal of this approach is not to define how moral theory requires vehicles to behave, but rather to provide a computational approach that is flexible enough to accommodate a number of human 'moral positions' concerning what morality demands and what road users may expect, offering an evaluation tool for the social acceptability of an automated vehicle's decision making.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

There is a growing interest in using Large Language Models (LLMs) as agents to tackle real-world tasks that may require assessing complex situations. Yet, we have a limited understanding of LLMs' reasoning and decision-making capabilities, partly stemming from a lack of dedicated evaluation benchmarks. As negotiating and compromising are key aspects of our everyday communication and collaboration, we propose using scorable negotiation games as a new evaluation framework for LLMs. We create a testbed of diverse text-based, multi-agent, multi-issue, semantically rich negotiation games, with easily tunable difficulty. To solve the challenge, agents need to have strong arithmetic, inference, exploration, and planning capabilities, while seamlessly integrating them. Via a systematic zero-shot Chain-of-Thought prompting (CoT), we show that agents can negotiate and consistently reach successful deals. We quantify the performance with multiple metrics and observe a large gap between GPT-4 and earlier models. Importantly, we test the generalization to new games and setups. Finally, we show that these games can help evaluate other critical aspects, such as the interaction dynamics between agents in the presence of greedy and adversarial players.

This habilitation thesis is intended to be a good introduction to enumeration, the problem of listing solutions. It focuses on the different ways of measuring complexity in enumeration, with a particular emphasis on my contributions to the field.

The recent surge of interest surrounding Multimodal Neural Networks (MM-NN) is attributed to their ability to effectively process and integrate multiscale information from diverse data sources. MM-NNs extract and fuse features from multiple modalities using adequate unimodal backbones and specific fusion networks. Although this helps strengthen the multimodal information representation, designing such networks is labor-intensive. It requires tuning the architectural parameters of the unimodal backbones, choosing the fusing point, and selecting the operations for fusion. Furthermore, multimodality AI is emerging as a cutting-edge option in Internet of Things (IoT) systems where inference latency and energy consumption are critical metrics in addition to accuracy. In this paper, we propose Harmonic-NAS, a framework for the joint optimization of unimodal backbones and multimodal fusion networks with hardware awareness on resource-constrained devices. Harmonic-NAS involves a two-tier optimization approach for the unimodal backbone architectures and fusion strategy and operators. By incorporating the hardware dimension into the optimization, evaluation results on various devices and multimodal datasets have demonstrated the superiority of Harmonic-NAS over state-of-the-art approaches achieving up to 10.9% accuracy improvement, 1.91x latency reduction, and 2.14x energy efficiency gain.

Data-driven simulation has become a favorable way to train and test autonomous driving algorithms. The idea of replacing the actual environment with a learned simulator has also been explored in model-based reinforcement learning in the context of world models. In this work, we show data-driven traffic simulation can be formulated as a world model. We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving, and based on TrafficBots we obtain a world model tailored for the planning module of autonomous vehicles. Existing data-driven traffic simulators are lacking configurability and scalability. To generate configurable behaviors, for each agent we introduce a destination as navigational information, and a time-invariant latent personality that specifies the behavioral style. To improve the scalability, we present a new scheme of positional encoding for angles, allowing all agents to share the same vectorized context and the use of an architecture based on dot-product attention. As a result, we can simulate all traffic participants seen in dense urban scenarios. Experiments on the Waymo open motion dataset show TrafficBots can simulate realistic multi-agent behaviors and achieve good performance on the motion prediction task.

The recent progress in Large Language Models (LLM) has spurred various advancements in image-language conversation agents, while how to build a proficient video-based dialogue system is still under exploration. Considering the extensive scale of LLM and visual backbone, minimal GPU memory is left for facilitating effective temporal modeling, which is crucial for comprehending and providing feedback on videos. To this end, we propose Branching Temporal Adapter (BT-Adapter), a novel method for extending image-language pretrained models into the video domain. Specifically, BT-Adapter serves as a plug-and-use temporal modeling branch alongside the pretrained visual encoder, which is tuned while keeping the backbone frozen. Just pretrained once, BT-Adapter can be seamlessly integrated into all image conversation models using this version of CLIP, enabling video conversations without the need for video instructions. Besides, we develop a unique asymmetric token masking strategy inside the branch with tailor-made training tasks for BT-Adapter, facilitating faster convergence and better results. Thanks to BT-Adapter, we are able to empower existing multimodal dialogue models with strong video understanding capabilities without incurring excessive GPU costs. Without bells and whistles, BT-Adapter achieves (1) state-of-the-art zero-shot results on various video tasks using thousands of fewer GPU hours. (2) better performance than current video chatbots without any video instruction tuning. (3) state-of-the-art results of video chatting using video instruction tuning, outperforming previous SOTAs by a large margin.

Computer-based decision systems are widely used to automate decisions in many aspects of everyday life, which include sensitive areas like hiring, loaning and even criminal sentencing. A decision pipeline heavily relies on large volumes of historical real-world data for training its models. However, historical training data often contains gender, racial or other biases which are propagated to the trained models influencing computer-based decisions. In this work, we propose a robust methodology that guarantees the removal of unwanted biases while maximally preserving classification utility. Our approach can always achieve this in a model-independent way by deriving from real-world data the asymptotic dataset that uniquely encodes demographic parity and realism. As a proof-of-principle, we deduce from public census records such an asymptotic dataset from which synthetic samples can be generated to train well-established classifiers. Benchmarking the generalization capability of these classifiers trained on our synthetic data, we confirm the absence of any explicit or implicit bias in the computer-aided decision.

Computing is a critical driving force in the development of human civilization. In recent years, we have witnessed the emergence of intelligent computing, a new computing paradigm that is reshaping traditional computing and promoting digital revolution in the era of big data, artificial intelligence and internet-of-things with new computing theories, architectures, methods, systems, and applications. Intelligent computing has greatly broadened the scope of computing, extending it from traditional computing on data to increasingly diverse computing paradigms such as perceptual intelligence, cognitive intelligence, autonomous intelligence, and human-computer fusion intelligence. Intelligence and computing have undergone paths of different evolution and development for a long time but have become increasingly intertwined in recent years: intelligent computing is not only intelligence-oriented but also intelligence-driven. Such cross-fertilization has prompted the emergence and rapid advancement of intelligent computing. Intelligent computing is still in its infancy and an abundance of innovations in the theories, systems, and applications of intelligent computing are expected to occur soon. We present the first comprehensive survey of literature on intelligent computing, covering its theory fundamentals, the technological fusion of intelligence and computing, important applications, challenges, and future perspectives. We believe that this survey is highly timely and will provide a comprehensive reference and cast valuable insights into intelligent computing for academic and industrial researchers and practitioners.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

北京阿比特科技有限公司