In today's technologically driven world, the rapid spread of fake news, particularly during critical events like elections, poses a growing threat to the integrity of information. To tackle this challenge head-on, we introduce FakeWatch, a comprehensive framework carefully designed to detect fake news. Leveraging a newly curated dataset of North American election-related news articles, we construct robust classification models. Our framework integrates a model hub comprising of both traditional machine learning (ML) techniques and cutting-edge Language Models (LMs) to discern fake news effectively. Our overarching objective is to provide the research community with adaptable and precise classification models adept at identifying the ever-evolving landscape of misinformation. Quantitative evaluations of fake news classifiers on our dataset reveal that, while state-of-the-art LMs exhibit a slight edge over traditional ML models, classical models remain competitive due to their balance of accuracy and computational efficiency. Additionally, qualitative analyses shed light on patterns within fake news articles. This research lays the groundwork for future endeavors aimed at combating misinformation, particularly concerning electoral processes. We provide our labeled data and model publicly for use and reproducibility.
Despite the advancements and impressive performance of Multimodal Large Language Models (MLLMs) on benchmarks, their effectiveness in real-world, long-context, and multi-image tasks is unclear due to the benchmarks' limited scope. Existing benchmarks often focus on single-image and short-text samples, and when assessing multi-image tasks, they either limit the image count or focus on specific task (e.g time-series captioning), potentially obscuring the performance challenges of MLLMs. To address these limitations, we introduce MileBench, a pioneering benchmark designed to test the MultImodal Long-contExt capabilities of MLLMs. This benchmark comprises not only multimodal long contexts, but also multiple tasks requiring both comprehension and generation. We establish two distinct evaluation sets, diagnostic and realistic, to systematically assess MLLMs' long-context adaptation capacity and their ability to complete tasks in long-context scenarios. Our experimental results, obtained from testing 20 models, revealed that while the closed-source GPT-4(Vision) and Gemini 1.5 outperform others, most open-source MLLMs struggle in long-context situations. Interestingly, the performance gap tends to widen with an increase in the number of images. We strongly encourage an intensification of research efforts towards enhancing MLLMs' long-context capabilities, especially in scenarios involving multiple images.
Autonomous Driving (AD) systems rely on AI components to make safety and correct driving decisions. Unfortunately, today's AI algorithms are known to be generally vulnerable to adversarial attacks. However, for such AI component-level vulnerabilities to be semantically impactful at the system level, it needs to address non-trivial semantic gaps both (1) from the system-level attack input spaces to those at AI component level, and (2) from AI component-level attack impacts to those at the system level. In this paper, we define such research space as semantic AI security as opposed to generic AI security. Over the past 5 years, increasingly more research works are performed to tackle such semantic AI security challenges in AD context, which has started to show an exponential growth trend. In this paper, we perform the first systematization of knowledge of such growing semantic AD AI security research space. In total, we collect and analyze 53 such papers, and systematically taxonomize them based on research aspects critical for the security field. We summarize 6 most substantial scientific gaps observed based on quantitative comparisons both vertically among existing AD AI security works and horizontally with security works from closely-related domains. With these, we are able to provide insights and potential future directions not only at the design level, but also at the research goal, methodology, and community levels. To address the most critical scientific methodology-level gap, we take the initiative to develop an open-source, uniform, and extensible system-driven evaluation platform, named PASS, for the semantic AD AI security research community. We also use our implemented platform prototype to showcase the capabilities and benefits of such a platform using representative semantic AD AI attacks.
Public figures receive a disproportionate amount of abuse on social media, impacting their active participation in public life. Automated systems can identify abuse at scale but labelling training data is expensive, complex and potentially harmful. So, it is desirable that systems are efficient and generalisable, handling both shared and specific aspects of online abuse. We explore the dynamics of cross-group text classification in order to understand how well classifiers trained on one domain or demographic can transfer to others, with a view to building more generalisable abuse classifiers. We fine-tune language models to classify tweets targeted at public figures across DOmains (sport and politics) and DemOgraphics (women and men) using our novel DODO dataset, containing 28,000 labelled entries, split equally across four domain-demographic pairs. We find that (i) small amounts of diverse data are hugely beneficial to generalisation and model adaptation; (ii) models transfer more easily across demographics but models trained on cross-domain data are more generalisable; (iii) some groups contribute more to generalisability than others; and (iv) dataset similarity is a signal of transferability.
In today's age of digital technology, ethical concerns regarding computing systems are increasing. While the focus of such concerns currently is on requirements for software, this article spotlights the hardware domain, specifically microchips. For example, the opaqueness of modern microchips raises security issues, as malicious actors can manipulate them, jeopardizing system integrity. As a consequence, governments invest substantially to facilitate a secure microchip supply chain. To combat the opaqueness of hardware, this article introduces the concept of Explainable Hardware (XHW). Inspired by and building on previous work on Explainable AI (XAI) and explainable software systems, we develop a framework for achieving XHW comprising relevant stakeholders, requirements they might have concerning hardware, and possible explainability approaches to meet these requirements. Through an exploratory survey among 18 hardware experts, we showcase applications of the framework and discover potential research gaps. Our work lays the foundation for future work and structured debates on XHW.
This paper explores novel strategies to strengthen the security of Hybrid Wireless Body Area Networks (HyWBANs), essential in smart healthcare and Internet of Things (IoT) applications. Recognizing the vulnerability of HyWBAN to sophisticated cyber-attacks, we propose an innovative combination of semantic communications and jamming receivers. This dual-layered security mechanism protects against unauthorized access and data breaches, particularly in scenarios involving in-body to on-body communication channels. We conduct comprehensive laboratory measurements to understand hybrid (radio and optical) communication propagation through biological tissues and utilize these insights to refine a dataset for training a Deep Learning (DL) model. These models, in turn, generate semantic concepts linked to cryptographic keys for enhanced data confidentiality and integrity using a jamming receiver. The proposed model demonstrates a significant reduction in energy consumption compared to traditional cryptographic methods, like Elliptic Curve Diffie-Hellman (ECDH), especially when supplemented with jamming. Our approach addresses the primary security concerns and sets the baseline for future secure biomedical communication systems advancements.
Politics is one of the most prevalent topics discussed on social media platforms, particularly during major election cycles, where users engage in conversations about candidates and electoral processes. Malicious actors may use this opportunity to disseminate misinformation to undermine trust in the electoral process. The emergence of Large Language Models (LLMs) exacerbates this issue by enabling malicious actors to generate misinformation at an unprecedented scale. Artificial intelligence (AI)-generated content is often indistinguishable from authentic user content, raising concerns about the integrity of information on social networks. In this paper, we present a novel taxonomy for characterizing election-related claims. This taxonomy provides an instrument for analyzing election-related claims, with granular categories related to jurisdiction, equipment, processes, and the nature of claims. We introduce ElectAI, a novel benchmark dataset that consists of 9,900 tweets, each labeled as human- or AI-generated. For AI-generated tweets, the specific LLM variant that produced them is specified. We annotated a subset of 1,550 tweets using the proposed taxonomy to capture the characteristics of election-related claims. We explored the capabilities of LLMs in extracting the taxonomy attributes and trained various machine learning models using ElectAI to distinguish between human- and AI-generated posts and identify the specific LLM variant.
The Internet of Things (IoT) boom has revolutionized almost every corner of people's daily lives: healthcare, home, transportation, manufacturing, supply chain, and so on. With the recent development of sensor and communication technologies, IoT devices including smart wearables, cameras, smartwatches, and autonomous vehicles can accurately measure and perceive their surrounding environment. Continuous sensing generates massive amounts of data and presents challenges for machine learning. Deep learning models (e.g., convolution neural networks and recurrent neural networks) have been extensively employed in solving IoT tasks by learning patterns from multi-modal sensory data. Graph Neural Networks (GNNs), an emerging and fast-growing family of neural network models, can capture complex interactions within sensor topology and have been demonstrated to achieve state-of-the-art results in numerous IoT learning tasks. In this survey, we present a comprehensive review of recent advances in the application of GNNs to the IoT field, including a deep dive analysis of GNN design in various IoT sensing environments, an overarching list of public data and source code from the collected publications, and future research directions. To keep track of newly published works, we collect representative papers and their open-source implementations and create a Github repository at //github.com/GuiminDong/GNN4IoT.
Entity linking (EL) for the rapidly growing short text (e.g. search queries and news titles) is critical to industrial applications. Most existing approaches relying on adequate context for long text EL are not effective for the concise and sparse short text. In this paper, we propose a novel framework called Multi-turn Multiple-choice Machine reading comprehension (M3}) to solve the short text EL from a new perspective: a query is generated for each ambiguous mention exploiting its surrounding context, and an option selection module is employed to identify the golden entity from candidates using the query. In this way, M3 framework sufficiently interacts limited context with candidate entities during the encoding process, as well as implicitly considers the dissimilarities inside the candidate bunch in the selection stage. In addition, we design a two-stage verifier incorporated into M3 to address the commonly existed unlinkable problem in short text. To further consider the topical coherence and interdependence among referred entities, M3 leverages a multi-turn fashion to deal with mentions in a sequence manner by retrospecting historical cues. Evaluation shows that our M3 framework achieves the state-of-the-art performance on five Chinese and English datasets for the real-world short text EL.
Emotion plays an important role in detecting fake news online. When leveraging emotional signals, the existing methods focus on exploiting the emotions of news contents that conveyed by the publishers (i.e., publisher emotion). However, fake news is always fabricated to evoke high-arousal or activating emotions of people to spread like a virus, so the emotions of news comments that aroused by the crowd (i.e., social emotion) can not be ignored. Furthermore, it needs to be explored whether there exists a relationship between publisher emotion and social emotion (i.e., dual emotion), and how the dual emotion appears in fake news. In the paper, we propose Dual Emotion Features to mine dual emotion and the relationship between them for fake news detection. And we design a universal paradigm to plug it into any existing detectors as an enhancement. Experimental results on three real-world datasets indicate the effectiveness of the proposed features.
ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.