亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advances in artificial intelligence (AI) have produced systems capable of increasingly sophisticated performance on cognitive tasks. However, AI systems still struggle in critical ways: unpredictable and novel environments (robustness), lack of transparency in their reasoning (explainability), challenges in communication and commitment (cooperation), and risks due to potential harmful actions (safety). We argue that these shortcomings stem from one overarching failure: AI systems lack wisdom. Drawing from cognitive and social sciences, we define wisdom as the ability to navigate intractable problems - those that are ambiguous, radically uncertain, novel, chaotic, or computationally explosive - through effective task-level and metacognitive strategies. While AI research has focused on task-level strategies, metacognition - the ability to reflect on and regulate one's thought processes - is underdeveloped in AI systems. In humans, metacognitive strategies such as recognizing the limits of one's knowledge, considering diverse perspectives, and adapting to context are essential for wise decision-making. We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety. By focusing on developing wise AI, we suggest an alternative to aligning AI with specific human values - a task fraught with conceptual and practical difficulties. Instead, wise AI systems can thoughtfully navigate complex situations, account for diverse human values, and avoid harmful actions. We discuss potential approaches to building wise AI, including benchmarking metacognitive abilities and training AI systems to employ wise reasoning. Prioritizing metacognition in AI research will lead to systems that act not only intelligently but also wisely in complex, real-world situations.

相關內容

WISE會議建立了一個致力于高質量研究的社區,并為推進與Web信息系統相關的主題提供了基礎。 官網地址:

This work presents an abstract framework for the design, implementation, and analysis of the multiscale spectral generalized finite element method (MS-GFEM), a particular numerical multiscale method originally proposed in [I. Babuska and R. Lipton, Multiscale Model.\;\,Simul., 9 (2011), pp.~373--406]. MS-GFEM is a partition of unity method employing optimal local approximation spaces constructed from local spectral problems. We establish a general local approximation theory demonstrating exponential convergence with respect to local degrees of freedom under certain assumptions, with explicit dependence on key problem parameters. Our framework applies to a broad class of multiscale PDEs with $L^{\infty}$-coefficients in both continuous and discrete, finite element settings, including highly indefinite problems (convection-dominated diffusion, as well as the high-frequency Helmholtz, Maxwell and elastic wave equations with impedance boundary conditions), and higher-order problems. Notably, we prove a local convergence rate of $O(e^{-cn^{1/d}})$ for MS-GFEM for all these problems, improving upon the $O(e^{-cn^{1/(d+1)}})$ rate shown by Babuska and Lipton. Moreover, based on the abstract local approximation theory for MS-GFEM, we establish a unified framework for showing low-rank approximations to multiscale PDEs. This framework applies to the aforementioned problems, proving that the associated Green's functions admit an $O(|\log\epsilon|^{d})$-term separable approximation on well-separated domains with error $\epsilon>0$. Our analysis improves and generalizes the result in [M. Bebendorf and W. Hackbusch, Numerische Mathematik, 95 (2003), pp.~1-28] where an $O(|\log\epsilon|^{d+1})$-term separable approximation was proved for Poisson-type problems.

We design and investigate a variety of multigrid solvers for high-order local discontinuous Galerkin methods applied to elliptic interface and multiphase Stokes problems. Using the template of a standard multigrid V-cycle, we consider a variety of element-wise block smoothers, including Jacobi, multi-coloured Gauss-Seidel, processor-block Gauss-Seidel, and with special interest, smoothers based on sparse approximate inverse (SAI) methods. In particular, we develop SAI methods that: (i) balance the smoothing of velocity and pressure variables in Stokes problems; and (ii) robustly handles high-contrast viscosity coefficients in multiphase problems. Across a broad range of two- and three-dimensional test cases, including Poisson, elliptic interface, steady-state Stokes, and unsteady Stokes problems, we examine a multitude of multigrid smoother and solver combinations. In every case, there is at least one approach that matches the performance of classical geometric multigrid algorithms, e.g., 4 to 8 iterations to reduce the residual by 10 orders of magnitude. We also discuss their relative merits with regard to simplicity, robustness, computational cost, and parallelisation.

Reinforcement learning (RL) algorithms aim to balance exploiting the current best strategy with exploring new options that could lead to higher rewards. Most common RL algorithms use undirected exploration, i.e., select random sequences of actions. Exploration can also be directed using intrinsic rewards, such as curiosity or model epistemic uncertainty. However, effectively balancing task and intrinsic rewards is challenging and often task-dependent. In this work, we introduce a framework, MaxInfoRL, for balancing intrinsic and extrinsic exploration. MaxInfoRL steers exploration towards informative transitions, by maximizing intrinsic rewards such as the information gain about the underlying task. When combined with Boltzmann exploration, this approach naturally trades off maximization of the value function with that of the entropy over states, rewards, and actions. We show that our approach achieves sublinear regret in the simplified setting of multi-armed bandits. We then apply this general formulation to a variety of off-policy model-free RL methods for continuous state-action spaces, yielding novel algorithms that achieve superior performance across hard exploration problems and complex scenarios such as visual control tasks.

The application of discontinuous Galerkin (DG) schemes to hyperbolic systems of conservation laws requires a careful interplay between the space discretization, carried out with local polynomials and numerical fluxes at inter-cells, and a high-order time-integration to yield the final update. An important concern is how the scheme modifies the solution through the notions of numerical diffusion and dispersion. The analysis of these artifacts is well known for finite volume schemes, but it becomes more complex in the DG case. In particular, as far as we know, no analysis of this type has been considered for implicit integration with DG space discretization. The first part of this work intends to fill this gap, showing that the choice of the implicit Runge-Kutta scheme impacts deeply on the quality of the solution. We analyze dispersion-diffusion properties to select the best combination of the space-time discretization for high Courant numbers. In the second part of this work, we apply our findings to the integration of stiff hyperbolic systems with DG schemes. Implicit time-integration schemes leverage superior stability properties enabling the selection of time-steps based solely on accuracy requirements, thereby bypassing the need for minute time-steps. High-order schemes require the introduction of local space limiters which make the whole implicit scheme highly nonlinear. To mitigate the numerical complexity of these schemes, we propose to use appropriate space limiters that can be precomputed on a first-order prediction of the solution. This approach follows the methodology proposed by Puppo et al. (Commun. Comput. Phys., 2024) for high-order finite volume schemes. Numerical experiments explore the performance of this technique on scalar equations and systems.

In the past few years, intelligent agents powered by large language models (LLMs) have achieved remarkable progress in performing complex tasks. These LLM-based agents receive queries as tasks and decompose them into various subtasks via the equipped LLMs to guide the action of external entities (\eg{}, tools, AI-agents) to answer the questions from users. Empowered by their exceptional capabilities of understanding and problem-solving, they are widely adopted in labor-intensive sectors including healthcare, finance, code completion, \etc{} At the same time, there are also concerns about the potential misuse of these agents, prompting the built-in safety guards from service providers. To circumvent the built-in guidelines, the prior studies proposed a multitude of attacks including memory poisoning, jailbreak, and prompt injection. These studies often fail to maintain effectiveness across safety filters employed by agents due to the restricted privileges and the harmful semantics in queries. In this paper, we introduce \Name, a novel hijacking attack to manipulate the action plans of black-box agent system. \Name first collects the action-aware memory through prompt theft from long-term memory. It then leverages the internal memory retrieval mechanism of the agent to provide an erroneous context. The huge gap between the latent spaces of the retriever and safety filters allows our method to bypass the detection easily. Extensive experimental results demonstrate the effectiveness of our apporach (\eg{}, 99.67\% ASR). Besides, our approach achieved an average bypass rate of 92.7\% for safety filters.

Multi-agent systems (MAS) have gained relevance in the field of artificial intelligence by offering tools for modelling complex environments where autonomous agents interact to achieve common or individual goals. In these systems, norms emerge as a fundamental component to regulate the behaviour of agents, promoting cooperation, coordination and conflict resolution. This article presents a systematic review, following the PRISMA method, on the emergence of norms in MAS, exploring the main mechanisms and factors that influence this process. Sociological, structural, emotional and cognitive aspects that facilitate the creation, propagation and reinforcement of norms are addressed. The findings highlight the crucial role of social network topology, as well as the importance of emotions and shared values in the adoption and maintenance of norms. Furthermore, opportunities are identified for future research that more explicitly integrates emotional and ethical dynamics in the design of adaptive normative systems. This work provides a comprehensive overview of the current state of research on norm emergence in MAS, serving as a basis for advancing the development of more efficient and flexible systems in artificial and real-world contexts.

Basic general properties are considered for the Fisher-type information involving higher order derivatives. They are used to explore various properties of probability densities and to derive Stam-type inequalities.

The multi-modal perception methods are thriving in the autonomous driving field due to their better usage of complementary data from different sensors. Such methods depend on calibration and synchronization between sensors to get accurate environmental information. There have already been studies about space-alignment robustness in autonomous driving object detection process, however, the research for time-alignment is relatively few. As in reality experiments, LiDAR point clouds are more challenging for real-time data transfer, our study used historical frames of LiDAR to better align features when the LiDAR data lags exist. We designed a Timealign module to predict and combine LiDAR features with observation to tackle such time misalignment based on SOTA GraphBEV framework.

Leveraging the large body of work devoted in recent years to describe redundancy and synergy in multivariate interactions among random variables, we propose a novel approach to quantify cooperative effects in feature importance, one of the most used techniques for explainable artificial intelligence. In particular, we propose an adaptive version of a well-known metric of feature importance, named Leave One Covariate Out (LOCO), to disentangle high-order effects involving a given input feature in regression problems. LOCO is the reduction of the prediction error when the feature under consideration is added to the set of all the features used for regression. Instead of calculating the LOCO using all the features at hand, as in its standard version, our method searches for the multiplet of features that maximize LOCO and for the one that minimize it. This provides a decomposition of the LOCO as the sum of a two-body component and higher-order components (redundant and synergistic), also highlighting the features that contribute to building these high-order effects alongside the driving feature. We report the application to proton/pion discrimination from simulated detector measures by GEANT.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

北京阿比特科技有限公司