亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, circle representation has been introduced for medical imaging, designed specifically to enhance the detection of instance objects that are spherically shaped (e.g., cells, glomeruli, and nuclei). Given its outstanding effectiveness in instance detection, it is compelling to consider the application of circle representation for segmenting instance medical objects. In this study, we introduce CircleSnake, a simple end-to-end segmentation approach that utilizes circle contour deformation for segmenting ball-shaped medical objects at the instance level. The innovation of CircleSnake lies in these three areas: (1) It substitutes the complex bounding box-to-octagon contour transformation with a more consistent and rotation-invariant bounding circle-to-circle contour adaptation. This adaptation specifically targets ball-shaped medical objects. (2) The circle representation employed in CircleSnake significantly reduces the degrees of freedom to two, compared to eight in the octagon representation. This reduction enhances both the robustness of the segmentation performance and the rotational consistency of the method. (3) CircleSnake is the first end-to-end deep instance segmentation pipeline to incorporate circle representation, encompassing consistent circle detection, circle contour proposal, and circular convolution in a unified framework. This integration is achieved through the novel application of circular graph convolution within the context of circle detection and instance segmentation. In practical applications, such as the detection of glomeruli, nuclei, and eosinophils in pathological images, CircleSnake has demonstrated superior performance and greater rotation invariance when compared to benchmarks. The code has been made publicly available: //github.com/hrlblab/CircleSnake.

相關內容

The natural interaction between robots and pedestrians in the process of autonomous navigation is crucial for the intelligent development of mobile robots, which requires robots to fully consider social rules and guarantee the psychological comfort of pedestrians. Among the research results in the field of robotic path planning, the learning-based socially adaptive algorithms have performed well in some specific human-robot interaction environments. However, human-robot interaction scenarios are diverse and constantly changing in daily life, and the generalization of robot socially adaptive path planning remains to be further investigated. In order to address this issue, this work proposes a new socially adaptive path planning algorithm by combining the generative adversarial network (GAN) with the Optimal Rapidly-exploring Random Tree (RRT*) navigation algorithm. Firstly, a GAN model with strong generalization performance is proposed to adapt the navigation algorithm to more scenarios. Secondly, a GAN model based Optimal Rapidly-exploring Random Tree navigation algorithm (GAN-RRT*) is proposed to generate paths in human-robot interaction environments. Finally, we propose a socially adaptive path planning framework named GAN-RTIRL, which combines the GAN model with Rapidly-exploring random Trees Inverse Reinforcement Learning (RTIRL) to improve the homotopy rate between planned and demonstration paths. In the GAN-RTIRL framework, the GAN-RRT* path planner can update the GAN model from the demonstration path. In this way, the robot can generate more anthropomorphic paths in human-robot interaction environments and has stronger generalization in more complex environments. Experimental results reveal that our proposed method can effectively improve the anthropomorphic degree of robot motion planning and the homotopy rate between planned and demonstration paths.

The use of multimodal data in assisted diagnosis and segmentation has emerged as a prominent area of interest in current research. However, one of the primary challenges is how to effectively fuse multimodal features. Most of the current approaches focus on the integration of multimodal features while ignoring the correlation and consistency between different modal features, leading to the inclusion of potentially irrelevant information. To address this issue, we introduce an innovative Multimodal Information Cross Transformer (MicFormer), which employs a dual-stream architecture to simultaneously extract features from each modality. Leveraging the Cross Transformer, it queries features from one modality and retrieves corresponding responses from another, facilitating effective communication between bimodal features. Additionally, we incorporate a deformable Transformer architecture to expand the search space. We conducted experiments on the MM-WHS dataset, and in the CT-MRI multimodal image segmentation task, we successfully improved the whole-heart segmentation DICE score to 85.57 and MIoU to 75.51. Compared to other multimodal segmentation techniques, our method outperforms by margins of 2.83 and 4.23, respectively. This demonstrates the efficacy of MicFormer in integrating relevant information between different modalities in multimodal tasks. These findings hold significant implications for multimodal image tasks, and we believe that MicFormer possesses extensive potential for broader applications across various domains. Access to our method is available at //github.com/fxxJuses/MICFormer

Blocking is a critical step in entity resolution, and the emergence of neural network-based representation models has led to the development of dense blocking as a promising approach for exploring deep semantics in blocking. However, previous advanced self-supervised dense blocking approaches require domain-specific training on the target domain, which limits the benefits and rapid adaptation of these methods. To address this issue, we propose UniBlocker, a dense blocker that is pre-trained on a domain-independent, easily-obtainable tabular corpus using self-supervised contrastive learning. By conducting domain-independent pre-training, UniBlocker can be adapted to various downstream blocking scenarios without requiring domain-specific fine-tuning. To evaluate the universality of our entity blocker, we also construct a new benchmark covering a wide range of blocking tasks from multiple domains and scenarios. Our experiments show that the proposed UniBlocker, without any domain-specific learning, significantly outperforms previous self- and unsupervised dense blocking methods and is comparable and complementary to the state-of-the-art sparse blocking methods.

Collaborative filtering is a critical technique in recommender systems. It has been increasingly viewed as a conditional generative task for user feedback data, where newly developed diffusion model shows great potential. However, existing studies on diffusion model lack effective solutions for modeling implicit feedback. Particularly, the standard isotropic diffusion process overlooks correlation between items, misaligned with the graphical structure of the interaction space. Meanwhile, Gaussian noise destroys personalized information in a user's interaction vector, causing difficulty in its reconstruction. In this paper, we adapt standard diffusion model and propose a novel Graph Signal Diffusion Model for Collaborative Filtering (named GiffCF). To better represent the correlated distribution of user-item interactions, we define a generalized diffusion process using heat equation on the item-item similarity graph. Our forward process smooths interaction signals with an advanced family of graph filters, introducing the graph adjacency as beneficial prior knowledge for recommendation. Our reverse process iteratively refines and sharpens latent signals in a noise-free manner, where the updates are conditioned on the user's history and computed from a carefully designed two-stage denoiser, leading to high-quality reconstruction. Finally, through extensive experiments, we show that GiffCF effectively leverages the advantages of both diffusion model and graph signal processing, and achieves state-of-the-art performance on three benchmark datasets.

Neural reflectance models are capable of reproducing the spatially-varying appearance of many real-world materials at different scales. Unfortunately, existing techniques such as NeuMIP have difficulties handling materials with strong shadowing effects or detailed specular highlights. In this paper, we introduce a neural appearance model that offers a new level of accuracy. Central to our model is an inception-based core network structure that captures material appearances at multiple scales using parallel-operating kernels and ensures multi-stage features through specialized convolution layers. Furthermore, we encode the inputs into frequency space, introduce a gradient-based loss, and employ it adaptive to the progress of the learning phase. We demonstrate the effectiveness of our method using a variety of synthetic and real examples.

Representing unstructured data in a structured form is most significant for information system management to analyze and interpret it. To do this, the unstructured data might be converted into Knowledge Graphs, by leveraging an information extraction pipeline whose main tasks are named entity recognition and relation extraction. This thesis aims to develop a novel continual relation extraction method to identify relations (interconnections) between entities in a data stream coming from the real world. Domain-specific data of this thesis is corona news from German and Austrian newspapers.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

北京阿比特科技有限公司