Deep neural network (DNN) inference based on secure 2-party computation (2PC) can offer cryptographically-secure privacy protection but suffers from orders of magnitude latency overhead due to enormous communication. Previous works heavily rely on a proxy metric of ReLU counts to approximate the communication overhead and focus on reducing the ReLUs to improve the communication efficiency. However, we observe these works achieve limited communication reduction for state-of-the-art (SOTA) 2PC protocols due to the ignorance of other linear and non-linear operations, which now contribute to the majority of communication. In this work, we present CoPriv, a framework that jointly optimizes the 2PC inference protocol and the DNN architecture. CoPriv features a new 2PC protocol for convolution based on Winograd transformation and develops DNN-aware optimization to significantly reduce the inference communication. CoPriv further develops a 2PC-aware network optimization algorithm that is compatible with the proposed protocol and simultaneously reduces the communication for all the linear and non-linear operations. We compare CoPriv with the SOTA 2PC protocol, CrypTFlow2, and demonstrate 2.1x communication reduction for both ResNet-18 and ResNet-32 on CIFAR-100. We also compare CoPriv with SOTA network optimization methods, including SNL, MetaPruning, etc. CoPriv achieves 9.98x and 3.88x online and total communication reduction with a higher accuracy compare to SNL, respectively. CoPriv also achieves 3.87x online communication reduction with more than 3% higher accuracy compared to MetaPruning.
This paper addresses the need for automatic and efficient generation of host driver code for arbitrary custom AXI-based accelerators targeting linear algebra algorithms, an important workload in various applications, including machine learning and scientific computing. While existing tools have focused on automating accelerator prototyping, little attention has been paid to the host-accelerator interaction. This paper introduces AXI4MLIR, an extension of the MLIR compiler framework designed to facilitate the automated generation of host-accelerator driver code. With new MLIR attributes and transformations, AXI4MLIR empowers users to specify accelerator features (including their instructions) and communication patterns and exploit the host memory hierarchy. We demonstrate AXI4MLIR's versatility across different types of accelerators and problems, showcasing significant CPU cache reference reductions (up to 56%) and up to a 1.65x speedup compared to manually optimized driver code implementations. AXI4MLIR implementation is open-source and available at: //github.com/AXI4MLIR/axi4mlir.
In this study, we aim to extend the capabilities of diffusion-based text-to-image (T2I) generation models by incorporating diverse modalities beyond textual description, such as sketch, box, color palette, and style embedding, within a single model. We thus design a multimodal T2I diffusion model, coined as DiffBlender, by separating the channels of conditions into three types, i.e., image forms, spatial tokens, and non-spatial tokens. The unique architecture of DiffBlender facilitates adding new input modalities, pioneering a scalable framework for conditional image generation. Notably, we achieve this without altering the parameters of the existing generative model, Stable Diffusion, only with updating partial components. Our study establishes new benchmarks in multimodal generation through quantitative and qualitative comparisons with existing conditional generation methods. We demonstrate that DiffBlender faithfully blends all the provided information and showcase its various applications in the detailed image synthesis.
Analog in-memory computing (AiMC) is an emerging technology that shows fantastic performance superiority for neural network acceleration. However, as the computational bit-width and scale increase, high-precision data conversion and long-distance data routing will result in unacceptable energy and latency overheads in the AiMC system. In this work, we focus on the potential of in-charge computing and in-time interconnection and show an innovative AiMC architecture, named AiDAC, with three key contributions: (1) AiDAC enhances multibit computing efficiency and reduces data conversion times by grouping capacitors technology; (2) AiDAC first adopts row drivers and column time accumulators to achieve large-scale AiMC arrays integration while minimizing the energy cost of data movements. (3) AiDAC is the first work to support large-scale all-analog multibit vector-matrix multiplication (VMM) operations. The evaluation shows that AiDAC maintains high-precision calculation (less than 0.79% total computing error) while also possessing excellent performance features, such as high parallelism (up to 26.2TOPS), low latency (<20ns/VMM), and high energy efficiency (123.8TOPS/W), for 8bits VMM with 1024 input channels.
Robotic collectives for military and disaster response applications require coalition formation algorithms to partition robots into appropriate task teams. Collectives' missions will often incorporate tasks that require multiple high-level robot behaviors or services, which coalition formation must accommodate. The highly dynamic and unstructured application domains also necessitate that coalition formation algorithms produce near optimal solutions (i.e., >95% utility) in near real-time (i.e., <5 minutes) with very large collectives (i.e., hundreds of robots). No previous coalition formation algorithm satisfies these requirements. An initial evaluation found that traditional auction-based algorithms' runtimes are too long, even though the centralized simulator incorporated ideal conditions unlikely to occur in real-world deployments (i.e., synchronization across robots and perfect, instantaneous communication). The hedonic game-based GRAPE algorithm can produce solutions in near real-time, but cannot be applied to multiple service collectives. This manuscript integrates GRAPE and a services model, producing GRAPE-S and Pair-GRAPE-S. These algorithms and two auction baselines were evaluated using a centralized simulator with up to 1000 robots, and via the largest distributed coalition formation simulated evaluation to date, with up to 500 robots. The evaluations demonstrate that auctions transfer poorly to distributed collectives, resulting in excessive runtimes and low utility solutions. GRAPE-S satisfies the target domains' coalition formation requirements, producing near optimal solutions in near real-time, and Pair-GRAPE-S more than satisfies the domain requirements, producing optimal solutions in near real-time. GRAPE-S and Pair-GRAPE-S are the first algorithms demonstrated to support near real-time coalition formation for very large, distributed collectives with multiple services.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity is readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyse and interpret these strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyse the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.
Semi-supervised learning on class-imbalanced data, although a realistic problem, has been under studied. While existing semi-supervised learning (SSL) methods are known to perform poorly on minority classes, we find that they still generate high precision pseudo-labels on minority classes. By exploiting this property, in this work, we propose Class-Rebalancing Self-Training (CReST), a simple yet effective framework to improve existing SSL methods on class-imbalanced data. CReST iteratively retrains a baseline SSL model with a labeled set expanded by adding pseudo-labeled samples from an unlabeled set, where pseudo-labeled samples from minority classes are selected more frequently according to an estimated class distribution. We also propose a progressive distribution alignment to adaptively adjust the rebalancing strength dubbed CReST+. We show that CReST and CReST+ improve state-of-the-art SSL algorithms on various class-imbalanced datasets and consistently outperform other popular rebalancing methods.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.
The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.
Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.