亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Tensor decompositions have been successfully applied to compress neural networks. The compression algorithms using tensor decompositions commonly minimize the approximation error on the weights. Recent work assumes the approximation error on the weights is a proxy for the performance of the model to compress multiple layers and fine-tune the compressed model. Surprisingly, little research has systematically evaluated which approximation errors can be used to make choices regarding the layer, tensor decomposition method, and level of compression. To close this gap, we perform an experimental study to test if this assumption holds across different layers and types of decompositions, and what the effect of fine-tuning is. We include the approximation error on the features resulting from a compressed layer in our analysis to test if this provides a better proxy, as it explicitly takes the data into account. We find the approximation error on the weights has a positive correlation with the performance error, before as well as after fine-tuning. Basing the approximation error on the features does not improve the correlation significantly. While scaling the approximation error commonly is used to account for the different sizes of layers, the average correlation across layers is smaller than across all choices (i.e. layers, decompositions, and level of compression) before fine-tuning. When calculating the correlation across the different decompositions, the average rank correlation is larger than across all choices. This means multiple decompositions can be considered for compression and the approximation error can be used to choose between them.

相關內容

Sequential decoding, commonly applied to substitution channels, is a sub-optimal alternative to Viterbi decoding with significantly reduced memory costs. In this work, a sequential decoder for convolutional codes over channels that are prone to insertion, deletion, and substitution errors, is described and analyzed. Our decoder expands the code trellis by a new channel-state variable, called drift state, as proposed by Davey and MacKay. A suitable decoding metric on that trellis for sequential decoding is derived, generalizing the original Fano metric. The decoder is also extended to facilitate the simultaneous decoding of multiple received sequences that arise from a single transmitted sequence. Under low-noise environments, our decoding approach reduces the decoding complexity by a couple orders of magnitude in comparison to Viterbi's algorithm, albeit at slightly higher bit error rates. An analytical method to determine the computational cutoff rate is also suggested. This analysis is supported with numerical evaluations of bit error rates and computational complexity, which are compared with respect to optimal Viterbi decoding.

Numerous generalization bounds have been proposed in the literature as potential explanations for the ability of neural networks to generalize in the overparameterized setting. However, none of these bounds are tight. For instance, in their paper ``Fantastic Generalization Measures and Where to Find Them'', Jiang et al. (2020) examine more than a dozen generalization bounds, and show empirically that none of them imply guarantees that can explain the remarkable performance of neural networks. This raises the question of whether tight generalization bounds are at all possible. We consider two types of generalization bounds common in the literature: (1) bounds that depend on the training set and the output of the learning algorithm. There are multiple bounds of this type in the literature (e.g., norm-based and margin-based bounds), but we prove mathematically that no such bound can be uniformly tight in the overparameterized setting; (2) bounds that depend on the training set and on the learning algorithm (e.g., stability bounds). For these bounds, we show a trade-off between the algorithm's performance and the bound's tightness. Namely, if the algorithm achieves good accuracy on certain distributions in the overparameterized setting, then no generalization bound can be tight for it. We conclude that generalization bounds in the overparameterized setting cannot be tight without suitable assumptions on the population distribution.

Many systems and services rely on timing assumptions for performance and availability to perform critical aspects of their operation, such as various timeouts for failure detectors or optimizations to concurrency control mechanisms. Many such assumptions rely on the ability of different components to communicate on time -- a delay in communication may trigger the failure detector or cause the system to enter a less-optimized execution mode. Unfortunately, these timing assumptions are often set with little regard to actual communication guarantees of the underlying infrastructure -- in particular, the variability of communication delays between processes in different nodes/servers. The higher communication variability holds especially true for systems deployed in the public cloud since the cloud is a utility shared by many users and organizations, making it prone to higher performance variance due to noisy neighbor syndrome. In this work, we present Cloud Latency Tester (CLT), a simple tool that can help measure the variability of communication delays between nodes to help engineers set proper values for their timing assumptions. We also provide our observational analysis of running CLT in three major cloud providers and share the lessons we learned.

Hand-crafted image quality metrics, such as PSNR and SSIM, are commonly used to evaluate model privacy risk under reconstruction attacks. Under these metrics, reconstructed images that are determined to resemble the original one generally indicate more privacy leakage. Images determined as overall dissimilar, on the other hand, indicate higher robustness against attack. However, there is no guarantee that these metrics well reflect human opinions, which, as a judgement for model privacy leakage, are more trustworthy. In this paper, we comprehensively study the faithfulness of these hand-crafted metrics to human perception of privacy information from the reconstructed images. On 5 datasets ranging from natural images, faces, to fine-grained classes, we use 4 existing attack methods to reconstruct images from many different classification models and, for each reconstructed image, we ask multiple human annotators to assess whether this image is recognizable. Our studies reveal that the hand-crafted metrics only have a weak correlation with the human evaluation of privacy leakage and that even these metrics themselves often contradict each other. These observations suggest risks of current metrics in the community. To address this potential risk, we propose a learning-based measure called SemSim to evaluate the Semantic Similarity between the original and reconstructed images. SemSim is trained with a standard triplet loss, using an original image as an anchor, one of its recognizable reconstructed images as a positive sample, and an unrecognizable one as a negative. By training on human annotations, SemSim exhibits a greater reflection of privacy leakage on the semantic level. We show that SemSim has a significantly higher correlation with human judgment compared with existing metrics. Moreover, this strong correlation generalizes to unseen datasets, models and attack methods.

Neural networks drive the success of natural language processing. A fundamental property of language is its compositional structure, allowing humans to produce forms for new meanings systematically. However, unlike humans, neural networks notoriously struggle with systematic generalization, and do not necessarily benefit from compositional structure in emergent communication simulations. This poses a problem for using neural networks to simulate human language learning and evolution, and suggests crucial differences in the biases of the different learning systems. Here, we directly test how neural networks compare to humans in learning and generalizing different input languages that vary in their degree of structure. We evaluate the memorization and generalization capabilities of a pre-trained language model GPT-3.5 (analagous to an adult second language learner) and recurrent neural networks trained from scratch (analaogous to a child first language learner). Our results show striking similarities between deep neural networks and adult human learners, with more structured linguistic input leading to more systematic generalization and to better convergence between neural networks and humans. These findings suggest that all the learning systems are sensitive to the structure of languages in similar ways with compositionality being advantageous for learning. Our findings draw a clear prediction regarding children's learning biases, as well as highlight the challenges of automated processing of languages spoken by small communities. Notably, the similarity between humans and machines opens new avenues for research on language learning and evolution.

Multimodal Large Language Models (MLLMs) that integrate text and other modalities (especially vision) have achieved unprecedented performance in various multimodal tasks. However, due to the unsolved adversarial robustness problem of vision models, MLLMs can have more severe safety and security risks by introducing the vision inputs. In this work, we study the adversarial robustness of Google's Bard, a competitive chatbot to ChatGPT that released its multimodal capability recently, to better understand the vulnerabilities of commercial MLLMs. By attacking white-box surrogate vision encoders or MLLMs, the generated adversarial examples can mislead Bard to output wrong image descriptions with a 22% success rate based solely on the transferability. We show that the adversarial examples can also attack other MLLMs, e.g., a 26% attack success rate against Bing Chat and a 86% attack success rate against ERNIE bot. Moreover, we identify two defense mechanisms of Bard, including face detection and toxicity detection of images. We design corresponding attacks to evade these defenses, demonstrating that the current defenses of Bard are also vulnerable. We hope this work can deepen our understanding on the robustness of MLLMs and facilitate future research on defenses. Our code is available at //github.com/thu-ml/Attack-Bard.

Feature attribution methods are popular in interpretable machine learning. These methods compute the attribution of each input feature to represent its importance, but there is no consensus on the definition of "attribution", leading to many competing methods with little systematic evaluation, complicated in particular by the lack of ground truth attribution. To address this, we propose a dataset modification procedure to induce such ground truth. Using this procedure, we evaluate three common methods: saliency maps, rationales, and attentions. We identify several deficiencies and add new perspectives to the growing body of evidence questioning the correctness and reliability of these methods applied on datasets in the wild. We further discuss possible avenues for remedy and recommend new attribution methods to be tested against ground truth before deployment. The code is available at \url{//github.com/YilunZhou/feature-attribution-evaluation}.

The LSTM network was proposed to overcome the difficulty in learning long-term dependence, and has made significant advancements in applications. With its success and drawbacks in mind, this paper raises the question - do RNN and LSTM have long memory? We answer it partially by proving that RNN and LSTM do not have long memory from a statistical perspective. A new definition for long memory networks is further introduced, and it requires the model weights to decay at a polynomial rate. To verify our theory, we convert RNN and LSTM into long memory networks by making a minimal modification, and their superiority is illustrated in modeling long-term dependence of various datasets.

Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.

Language model pre-training has proven to be useful in learning universal language representations. As a state-of-the-art language model pre-training model, BERT (Bidirectional Encoder Representations from Transformers) has achieved amazing results in many language understanding tasks. In this paper, we conduct exhaustive experiments to investigate different fine-tuning methods of BERT on text classification task and provide a general solution for BERT fine-tuning. Finally, the proposed solution obtains new state-of-the-art results on eight widely-studied text classification datasets.

北京阿比特科技有限公司