亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We revisit the problem of Stone duality for lattices with various quasioperators, first studied in [14], presenting a fresh duality result. The new result is an improvement over that of [14] in two important respects. First, the axiomatization of frames in [14] was rather cumbersome and it is now simplified, partly by incorporating Gehrke's proposal [8] of section stability for relations. Second, morphisms are redefined so as to preserve Galois stable (and co-stable) sets and we rely for this, partly again, on Goldblatt's [11] recently proposed definition of bounded morphisms for polarities, though we need to strengthen the definition in order to get a Stone duality result. In studying the dual algebraic structures associated to polarities with relations we demonstrate that stable/co-stable set operators result as the Galois closure of the restriction of classical (though sorted) image operators generated by the frame relations to Galois stable/co-stable sets. This provides a proof, at the representation level, that non-distributive logics can be viewed as fragments of sorted, residuated (poly)modal logics, a research direction initiated in [16,17].

相關內容

We study the problem of estimating precision matrices in multivariate Gaussian distributions where all partial correlations are nonnegative, also known as multivariate totally positive of order two ($\mathrm{MTP}_2$). Such models have received significant attention in recent years, primarily due to interesting properties, e.g., the maximum likelihood estimator exists with as few as two observations regardless of the underlying dimension. We formulate this problem as a weighted $\ell_1$-norm regularized Gaussian maximum likelihood estimation under $\mathrm{MTP}_2$ constraints. On this direction, we propose a novel projected Newton-like algorithm that incorporates a well-designed approximate Newton direction, which results in our algorithm having the same orders of computation and memory costs as those of first-order methods. We prove that the proposed projected Newton-like algorithm converges to the minimizer of the problem. We further show, both theoretically and experimentally, that the minimizer of our formulation using the weighted $\ell_1$-norm is able to recover the support of the underlying precision matrix correctly without requiring the incoherence condition present in $\ell_1$-norm based methods. Experiments involving synthetic and real-world data demonstrate that our proposed algorithm is significantly more efficient, from a computational time perspective, than the state-of-the-art methods. Finally, we apply our method in financial time-series data, which are well-known for displaying positive dependencies, where we observe a significant performance in terms of modularity value on the learned financial networks.

Pairwise comparison matrices are increasingly used in settings where some pairs are missing. However, there exist few inconsistency indices for similar incomplete data sets and no reasonable measure has an associated threshold. This paper generalises the famous rule of thumb for the acceptable level of inconsistency, proposed by Saaty, to incomplete pairwise comparison matrices. The extension is based on choosing the missing elements such that the maximal eigenvalue of the incomplete matrix is minimised. Consequently, the well-established values of the random index cannot be adopted: the inconsistency of random matrices is found to be the function of matrix size and the number of missing elements, with a nearly linear dependence in the case of the latter variable. Our results can be directly built into decision-making software and used by practitioners as a statistical criterion for accepting or rejecting an incomplete pairwise comparison matrix.

Temporal relational modeling in video is essential for human action understanding, such as action recognition and action segmentation. Although Graph Convolution Networks (GCNs) have shown promising advantages in relation reasoning on many tasks, it is still a challenge to apply graph convolution networks on long video sequences effectively. The main reason is that large number of nodes (i.e., video frames) makes GCNs hard to capture and model temporal relations in videos. To tackle this problem, in this paper, we introduce an effective GCN module, Dilated Temporal Graph Reasoning Module (DTGRM), designed to model temporal relations and dependencies between video frames at various time spans. In particular, we capture and model temporal relations via constructing multi-level dilated temporal graphs where the nodes represent frames from different moments in video. Moreover, to enhance temporal reasoning ability of the proposed model, an auxiliary self-supervised task is proposed to encourage the dilated temporal graph reasoning module to find and correct wrong temporal relations in videos. Our DTGRM model outperforms state-of-the-art action segmentation models on three challenging datasets: 50Salads, Georgia Tech Egocentric Activities (GTEA), and the Breakfast dataset. The code is available at //github.com/redwang/DTGRM.

Perturbations targeting the graph structure have proven to be extremely effective in reducing the performance of Graph Neural Networks (GNNs), and traditional defenses such as adversarial training do not seem to be able to improve robustness. This work is motivated by the observation that adversarially injected edges effectively can be viewed as additional samples to a node's neighborhood aggregation function, which results in distorted aggregations accumulating over the layers. Conventional GNN aggregation functions, such as a sum or mean, can be distorted arbitrarily by a single outlier. We propose a robust aggregation function motivated by the field of robust statistics. Our approach exhibits the largest possible breakdown point of 0.5, which means that the bias of the aggregation is bounded as long as the fraction of adversarial edges of a node is less than 50\%. Our novel aggregation function, Soft Medoid, is a fully differentiable generalization of the Medoid and therefore lends itself well for end-to-end deep learning. Equipping a GNN with our aggregation improves the robustness with respect to structure perturbations on Cora ML by a factor of 3 (and 5.5 on Citeseer) and by a factor of 8 for low-degree nodes.

The existence of simple, uncoupled no-regret dynamics that converge to correlated equilibria in normal-form games is a celebrated result in the theory of multi-agent systems. Specifically, it has been known for more than 20 years that when all players seek to minimize their internal regret in a repeated normal-form game, the empirical frequency of play converges to a normal-form correlated equilibrium. Extensive-form (that is, tree-form) games generalize normal-form games by modeling both sequential and simultaneous moves, as well as private information. Because of the sequential nature and presence of partial information in the game, extensive-form correlation has significantly different properties than the normal-form counterpart, many of which are still open research directions. Extensive-form correlated equilibrium (EFCE) has been proposed as the natural extensive-form counterpart to normal-form correlated equilibrium. However, it was currently unknown whether EFCE emerges as the result of uncoupled agent dynamics. In this paper, we give the first uncoupled no-regret dynamics that converge to the set of EFCEs in $n$-player general-sum extensive-form games with perfect recall. First, we introduce a notion of trigger regret in extensive-form games, which extends that of internal regret in normal-form games. When each player has low trigger regret, the empirical frequency of play is close to an EFCE. Then, we give an efficient no-trigger-regret algorithm. Our algorithm decomposes trigger regret into local subproblems at each decision point for the player, and constructs a global strategy of the player from the local solutions at each decision point.

Although it is well believed for years that modeling relations between objects would help object recognition, there has not been evidence that the idea is working in the deep learning era. All state-of-the-art object detection systems still rely on recognizing object instances individually, without exploiting their relations during learning. This work proposes an object relation module. It processes a set of objects simultaneously through interaction between their appearance feature and geometry, thus allowing modeling of their relations. It is lightweight and in-place. It does not require additional supervision and is easy to embed in existing networks. It is shown effective on improving object recognition and duplicate removal steps in the modern object detection pipeline. It verifies the efficacy of modeling object relations in CNN based detection. It gives rise to the first fully end-to-end object detector.

We introduce a new multi-dimensional nonlinear embedding -- Piecewise Flat Embedding (PFE) -- for image segmentation. Based on the theory of sparse signal recovery, piecewise flat embedding with diverse channels attempts to recover a piecewise constant image representation with sparse region boundaries and sparse cluster value scattering. The resultant piecewise flat embedding exhibits interesting properties such as suppressing slowly varying signals, and offers an image representation with higher region identifiability which is desirable for image segmentation or high-level semantic analysis tasks. We formulate our embedding as a variant of the Laplacian Eigenmap embedding with an $L_{1,p} (0<p\leq1)$ regularization term to promote sparse solutions. First, we devise a two-stage numerical algorithm based on Bregman iterations to compute $L_{1,1}$-regularized piecewise flat embeddings. We further generalize this algorithm through iterative reweighting to solve the general $L_{1,p}$-regularized problem. To demonstrate its efficacy, we integrate PFE into two existing image segmentation frameworks, segmentation based on clustering and hierarchical segmentation based on contour detection. Experiments on four major benchmark datasets, BSDS500, MSRC, Stanford Background Dataset, and PASCAL Context, show that segmentation algorithms incorporating our embedding achieve significantly improved results.

Existing research on response generation for chatbot focuses on \textbf{First Response Generation} which aims to teach the chatbot to say the first response (e.g. a sentence) appropriate to the conversation context (e.g. the user's query). In this paper, we introduce a new task \textbf{Second Response Generation}, termed as Improv chat, which aims to teach the chatbot to say the second response after saying the first response with respect the conversation context, so as to lighten the burden on the user to keep the conversation going. Specifically, we propose a general learning based framework and develop a retrieval based system which can generate the second responses with the users' query and the chatbot's first response as input. We present the approach to building the conversation corpus for Improv chat from public forums and social networks, as well as the neural networks based models for response matching and ranking. We include the preliminary experiments and results in this paper. This work could be further advanced with better deep matching models for retrieval base systems or generative models for generation based systems as well as extensive evaluations in real-life applications.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

We describe a new training methodology for generative adversarial networks. The key idea is to grow both the generator and discriminator progressively: starting from a low resolution, we add new layers that model increasingly fine details as training progresses. This both speeds the training up and greatly stabilizes it, allowing us to produce images of unprecedented quality, e.g., CelebA images at 1024^2. We also propose a simple way to increase the variation in generated images, and achieve a record inception score of 8.80 in unsupervised CIFAR10. Additionally, we describe several implementation details that are important for discouraging unhealthy competition between the generator and discriminator. Finally, we suggest a new metric for evaluating GAN results, both in terms of image quality and variation. As an additional contribution, we construct a higher-quality version of the CelebA dataset.

北京阿比特科技有限公司