亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Network Intrusion Detection Systems (NIDSs) detect intrusion attacks in network traffic. In particular, machine-learning-based NIDSs have attracted attention because of their high detection rates of unknown attacks. A distributed processing framework for machine-learning-based NIDSs employing a scalable distributed stream processing system has been proposed in the literature. However, its performance, when machine-learning-based classifiers are implemented has not been comprehensively evaluated. In this study, we implement five representative classifiers (Decision Tree, Random Forest, Naive Bayes, SVM, and kNN) based on this framework and evaluate their throughput and latency. By conducting the experimental measurements, we investigate the difference in the processing performance among these classifiers and the bottlenecks in the processing performance of the framework.

相關內容

Processing 是一門(men)開源(yuan)編(bian)程語言和與之配套(tao)的集成開發環境(IDE)的名稱。Processing 在電(dian)子(zi)藝術和視覺設計社區被用(yong)來教(jiao)授編(bian)程基礎,并(bing)運用(yong)于大量的新(xin)媒體和互動藝術作品中(zhong)。 

The Advanced Metering Infrastructure (AMI) is one of the key components of the smart grid. It provides interactive services for managing billing and electricity consumption, but it also introduces new vectors for cyberattacks. Although, the devastating and severe impact of power overloading cyberattacks on smart grid AMI, few researches in the literature have addressed them. In the present paper, we propose a two-level anomaly detection framework based on regression decision trees. The introduced detection approach leverages the regularity and predictability of energy consumption to build reference consumption patterns for the whole neighborhood and each household within it. Using a reference consumption pattern enables detecting power overloading cyberattacks regardless of the attacker's strategy as they cause a drastic change in the consumption pattern. The continuous two-level monitoring of energy consumption load allows efficient and early detection of cyberattacks. We carried out an extensive experiment on a real-world publicly available energy consumption dataset of 500 customers in Ireland. We extracted, from the raw data, the relevant attributes for training the energy consumption patterns. The evaluation shows that our approach achieves a high detection rate, a low false alarm rate, and superior performances compared to existing solutions.

Deploying federated learning at the wireless edge introduces federated edge learning (FEEL). Given FEEL's limited communication resources and potential mislabeled data on devices, improper resource allocation or data selection can hurt convergence speed and increase training costs. Thus, to realize an efficient FEEL system, this paper emphasizes jointly optimizing resource allocation and data selection. Specifically, in this work, through rigorously modeling the training process and deriving an upper bound on FEEL's one-round convergence rate, we establish a problem of joint resource allocation and data selection, which, unfortunately, cannot be solved directly. Toward this end, we equivalently transform the original problem into a solvable form via a variable substitution and then break it into two subproblems, that is, the resource allocation problem and the data selection problem. The two subproblems are mixed-integer non-convex and integer non-convex problems, respectively, and achieving their optimal solutions is a challenging task. Based on the matching theory and applying the convex-concave procedure and gradient projection methods, we devise a low-complexity suboptimal algorithm for the two subproblems, respectively. Finally, the superiority of our proposed scheme of joint resource allocation and data selection is validated by numerical results.

Protecting Personal Identifiable Information (PII) in text data is crucial for privacy, but current PII generalization methods face challenges such as uneven data distributions and limited context awareness. To address these issues, we propose two approaches: a feature-based method using machine learning to improve performance on structured inputs, and a novel context-aware framework that considers the broader context and semantic relationships between the original text and generalized candidates. The context-aware approach employs Multilingual-BERT for text representation, functional transformations, and mean squared error scoring to evaluate candidates. Experiments on the WikiReplace dataset demonstrate the effectiveness of both methods, with the context-aware approach outperforming the feature-based one across different scales. This work contributes to advancing PII generalization techniques by highlighting the importance of feature selection, ensemble learning, and incorporating contextual information for better privacy protection in text anonymization.

Large Language Models (LLMs) are consistently improving at increasingly realistic software engineering (SE) tasks. In real-world software stacks, significant SE effort is spent developing foundational system software like the Linux kernel. Unlike application-level software, a systems codebase like Linux is multilingual (low-level C/Assembly/Bash/Rust); gigantic (>20 million lines); critical (impacting billions of devices worldwide), and highly concurrent (involving complex multi-threading). To evaluate if ML models are useful while developing such large-scale systems-level software, we introduce kGym (a platform) and kBench (a dataset). The kGym platform provides a SE environment for large-scale experiments on the Linux kernel, including compiling and running kernels in parallel across several virtual machines, detecting operations and crashes, inspecting logs, and querying and patching the code base. We use kGym to facilitate evaluation on kBench, a crash resolution benchmark drawn from real-world Linux kernel bugs. An example bug in kBench contains crashing stack traces, a bug-reproducer file, a developer-written fix, and other associated data. To understand current performance, we conduct baseline experiments by prompting LLMs to resolve Linux kernel crashes. Our initial evaluations reveal that the best performing LLM achieves 0.72% and 5.38% in the unassisted and assisted (i.e., buggy files disclosed to the model) settings, respectively. These results highlight the need for further research to enhance model performance in SE tasks. Improving performance on kBench requires models to master new learning skills, including understanding the cause of crashes and repairing faults, writing memory-safe and hardware-aware code, and understanding concurrency. As a result, this work opens up multiple avenues of research at the intersection of machine learning and systems software.

Large Visual Language Models (LVLMs) struggle with hallucinations in visual instruction following task(s), limiting their trustworthiness and real-world applicability. We propose Pelican -- a novel framework designed to detect and mitigate hallucinations through claim verification. Pelican first decomposes the visual claim into a chain of sub-claims based on first-order predicates. These sub-claims consist of (predicate, question) pairs and can be conceptualized as nodes of a computational graph. We then use Program-of-Thought prompting to generate Python code for answering these questions through flexible composition of external tools. Pelican improves over prior work by introducing (1) intermediate variables for precise grounding of object instances, and (2) shared computation for answering the sub-question to enable adaptive corrections and inconsistency identification. We finally use reasoning abilities of LLM to verify the correctness of the the claim by considering the consistency and confidence of the (question, answer) pairs from each sub-claim. Our experiments reveal a drop in hallucination rate by $\sim$8%-32% across various baseline LVLMs and a 27% drop compared to approaches proposed for hallucination mitigation on MMHal-Bench. Results on two other benchmarks further corroborate our results.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

When learning tasks over time, artificial neural networks suffer from a problem known as Catastrophic Forgetting (CF). This happens when the weights of a network are overwritten during the training of a new task causing forgetting of old information. To address this issue, we propose MetA Reusable Knowledge or MARK, a new method that fosters weight reusability instead of overwriting when learning a new task. Specifically, MARK keeps a set of shared weights among tasks. We envision these shared weights as a common Knowledge Base (KB) that is not only used to learn new tasks, but also enriched with new knowledge as the model learns new tasks. Key components behind MARK are two-fold. On the one hand, a metalearning approach provides the key mechanism to incrementally enrich the KB with new knowledge and to foster weight reusability among tasks. On the other hand, a set of trainable masks provides the key mechanism to selectively choose from the KB relevant weights to solve each task. By using MARK, we achieve state of the art results in several popular benchmarks, surpassing the best performing methods in terms of average accuracy by over 10% on the 20-Split-MiniImageNet dataset, while achieving almost zero forgetfulness using 55% of the number of parameters. Furthermore, an ablation study provides evidence that, indeed, MARK is learning reusable knowledge that is selectively used by each task.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司