亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The present study explores a cost-effective method for using activated ground granulated blast furnace slag (GGBFS) and silica fume (SF) as cement substitutes. Instead of activating them with expensive alkali solutions, the present study employs industrial-grade powdered sodium aluminate (SA) and hydrated lime (HL) as activators, reducing expenses by about 94.5% compared to their corresponding analytical-grade counterparts. Herein, the exclusivity is depicted using less pure chemicals rather than relying on reagents with 99% purity. Two mixing techniques are compared: one involves directly introducing powdered SA and HL, while the other pre-mixes SA with water before adding it to a dry powder mixture of GGBFS, SF, and HL. Microstructural analysis reveals that the initial strength results from various hydrate phases, including calcium-sodium-aluminate-silicate hydrate (CNASH). The latter strength is attributed to the coexistence of calcium-silicate hydrate (CSH), calcium-aluminate-silicate hydrate (CASH) and sodium-aluminate-silicate hydrate (NASH), with contributions from calcite and hydrotalcite. The SF content significantly influenced the formation of these gel phases. Thermogravimetric analysis (TGA) reveals phase transitions and bound water related to hydration products. The optimal mix comprises 10% SF, 90% GGBFS, 9.26% HL, and 13.25% SA, with a water-to-solids ratio of 0.45. This approach yields a compressive strength of 35.1 MPa after 28 days and 41.33 MPa after 120 days, hence suitable for structural construction.

相關內容

本專題討論會主要討論離散問題之有效演算法與資料結構。除了這些方法和結構的設計,還包括它們的使用、性能分析以及與它們的發展或局限性相關的數學問題。性能分析可以是分析性的,也可以是實驗性的,可以是針對最壞情況或預期情況的性能。研究可以是理論性的,也可以是基于實踐中出現的數據集,可以解決績效分析中涉及的方法學問題。官網鏈接: · GaN · 3D · state-of-the-art · HTTPS ·
2024 年 2 月 1 日

To obtain high-quality Positron emission tomography (PET) images while minimizing radiation exposure, numerous methods have been proposed to reconstruct standard-dose PET (SPET) images from the corresponding low-dose PET (LPET) images. However, these methods heavily rely on voxel-based representations, which fall short of adequately accounting for the precise structure and fine-grained context, leading to compromised reconstruction. In this paper, we propose a 3D point-based context clusters GAN, namely PCC-GAN, to reconstruct high-quality SPET images from LPET. Specifically, inspired by the geometric representation power of points, we resort to a point-based representation to enhance the explicit expression of the image structure, thus facilitating the reconstruction with finer details. Moreover, a context clustering strategy is applied to explore the contextual relationships among points, which mitigates the ambiguities of small structures in the reconstructed images. Experiments on both clinical and phantom datasets demonstrate that our PCC-GAN outperforms the state-of-the-art reconstruction methods qualitatively and quantitatively. Code is available at //github.com/gluucose/PCCGAN.

This study explores four methods of generating paraphrases in Malayalam, utilizing resources available for English paraphrasing and pre-trained Neural Machine Translation (NMT) models. We evaluate the resulting paraphrases using both automated metrics, such as BLEU, METEOR, and cosine similarity, as well as human annotation. Our findings suggest that automated evaluation measures may not be fully appropriate for Malayalam, as they do not consistently align with human judgment. This discrepancy underscores the need for more nuanced paraphrase evaluation approaches especially for highly agglutinative languages.

We introduce a new generative model that combines latent diffusion with persistent homology to create 3D shapes with high diversity, with a special emphasis on their topological characteristics. Our method involves representing 3D shapes as implicit fields, then employing persistent homology to extract topological features, including Betti numbers and persistence diagrams. The shape generation process consists of two steps. Initially, we employ a transformer-based autoencoding module to embed the implicit representation of each 3D shape into a set of latent vectors. Subsequently, we navigate through the learned latent space via a diffusion model. By strategically incorporating topological features into the diffusion process, our generative module is able to produce a richer variety of 3D shapes with different topological structures. Furthermore, our framework is flexible, supporting generation tasks constrained by a variety of inputs, including sparse and partial point clouds, as well as sketches. By modifying the persistence diagrams, we can alter the topology of the shapes generated from these input modalities.

Large Language Models have emerged as prime candidates to tackle misinformation mitigation. However, existing approaches struggle with hallucinations and overconfident predictions. We propose an uncertainty quantification framework that leverages both direct confidence elicitation and sampled-based consistency methods to provide better calibration for NLP misinformation mitigation solutions. We first investigate the calibration of sample-based consistency methods that exploit distinct features of consistency across sample sizes and stochastic levels. Next, we evaluate the performance and distributional shift of a robust numeric verbalization prompt across single vs. two-step confidence elicitation procedure. We also compare the performance of the same prompt with different versions of GPT and different numerical scales. Finally, we combine the sample-based consistency and verbalized methods to propose a hybrid framework that yields a better uncertainty estimation for GPT models. Overall, our work proposes novel uncertainty quantification methods that will improve the reliability of Large Language Models in misinformation mitigation applications.

We propose Compact and Swift Segmenting 3D Gaussians(CoSSegGaussians), a method for compact 3D-consistent scene segmentation at fast rendering speed with only RGB images input. Previous NeRF-based segmentation methods have relied on time-consuming neural scene optimization. While recent 3D Gaussian Splatting has notably improved speed, existing Gaussian-based segmentation methods struggle to produce compact masks, especially in zero-shot segmentation. This issue probably stems from their straightforward assignment of learnable parameters to each Gaussian, resulting in a lack of robustness against cross-view inconsistent 2D machine-generated labels. Our method aims to address this problem by employing Dual Feature Fusion Network as Gaussians' segmentation field. Specifically, we first optimize 3D Gaussians under RGB supervision. After Gaussian Locating, DINO features extracted from images are applied through explicit unprojection, which are further incorporated with spatial features from the efficient point cloud processing network. Feature aggregation is utilized to fuse them in a global-to-local strategy for compact segmentation features. Experimental results show that our model outperforms baselines on both semantic and panoptic zero-shot segmentation task, meanwhile consumes less than 10% inference time compared to NeRF-based methods. Code and more results will be available at //David-Dou.github.io/CoSSegGaussians

Despite the utility of Large Language Models (LLMs) across a wide range of tasks and scenarios, developing a method for reliably evaluating LLMs across varied contexts continues to be challenging. Modern evaluation approaches often use LLMs to assess responses generated by LLMs. However, the meta-evaluation conducted to assess the effectiveness of these LLMs as evaluators is typically constrained by the coverage of existing benchmarks or requires extensive human annotation. This underscores the urgency of methods for scalable meta-evaluation that can effectively, reliably, and efficiently evaluate the performance of LLMs as evaluators across diverse tasks and scenarios, particularly in potentially new, user-defined scenarios. To fill this gap, we propose ScaleEval, an agent-debate-assisted meta-evaluation framework that leverages the capabilities of multiple communicative LLM agents. This framework supports multi-round discussions to assist human annotators in discerning the most capable LLMs as evaluators, which significantly eases their workload in cases that used to require large-scale annotations during meta-evaluation. We release the code for our framework, which is publicly available at: \url{//github.com/GAIR-NLP/scaleeval}.

This paper presents Flash, an optimized private inference (PI) hybrid protocol utilizing both homomorphic encryption (HE) and secure two-party computation (2PC), which can reduce the end-to-end PI latency for deep CNN models less than 1 minute with CPU. To this end, first, Flash proposes a low-latency convolution algorithm built upon a fast slot rotation operation and a novel data encoding scheme, which results in 4-94x performance gain over the state-of-the-art. Second, to minimize the communication cost introduced by the standard nonlinear activation function ReLU, Flash replaces the entire ReLUs with the polynomial $x^2+x$ and trains deep CNN models with the new activation function. The trained models improve the inference accuracy for CIFAR-10/100 and TinyImageNet by 16% on average (up to 40% for ResNet-32) compared to prior art. Last, Flash proposes an efficient 2PC-based $x^2+x$ evaluation protocol that does not require any offline communication and that reduces the total communication cost to process the activation layer by 84-196x over the state-of-the-art. As a result, the end-to-end PI latency of Flash implemented on CPU is 0.02 minute for CIFAR-100 and 0.57 minute for TinyImageNet classification, while the total data communication is 0.07GB for CIFAR-100 and 0.22GB for TinyImageNet. Flash improves the state-of-the-art PI by 16-45x in latency and 84-196x in communication cost. Moreover, even for ImageNet, Flash can deliver the latency less than 1 minute on CPU with the total communication less than 1GB.

Knowledge graphs (KGs) capture knowledge in the form of head--relation--tail triples and are a crucial component in many AI systems. There are two important reasoning tasks on KGs: (1) single-hop knowledge graph completion, which involves predicting individual links in the KG; and (2), multi-hop reasoning, where the goal is to predict which KG entities satisfy a given logical query. Embedding-based methods solve both tasks by first computing an embedding for each entity and relation, then using them to form predictions. However, existing scalable KG embedding frameworks only support single-hop knowledge graph completion and cannot be applied to the more challenging multi-hop reasoning task. Here we present Scalable Multi-hOp REasoning (SMORE), the first general framework for both single-hop and multi-hop reasoning in KGs. Using a single machine SMORE can perform multi-hop reasoning in Freebase KG (86M entities, 338M edges), which is 1,500x larger than previously considered KGs. The key to SMORE's runtime performance is a novel bidirectional rejection sampling that achieves a square root reduction of the complexity of online training data generation. Furthermore, SMORE exploits asynchronous scheduling, overlapping CPU-based data sampling, GPU-based embedding computation, and frequent CPU--GPU IO. SMORE increases throughput (i.e., training speed) over prior multi-hop KG frameworks by 2.2x with minimal GPU memory requirements (2GB for training 400-dim embeddings on 86M-node Freebase) and achieves near linear speed-up with the number of GPUs. Moreover, on the simpler single-hop knowledge graph completion task SMORE achieves comparable or even better runtime performance to state-of-the-art frameworks on both single GPU and multi-GPU settings.

Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司