Decentralized cryptocurrencies are payment systems that rely on aligning the incentives of users and miners to operate correctly and offer a high quality of service to their users. Recent literature studies the mechanism design problem of the auction serving as the transaction fee mechanism (TFM). We show that while the protocol that requires a user to "pay as bid" and greedily chooses among available transactions based on their fees is not dominant strategy incentive-compatible (DSIC) for users, it has a Bayesian-Nash equilibrium (BNE) where bids are slightly shaded. Relaxing this incentive compatibility requirement circumvents the impossibility result of [16] and allows for an approximately revenue and welfare optimal, myopic miners incentive-compatibility (MMIC), and off-chain-agreement (OCA)-proof mechanism. We prove its guarantees using different benchmarks, and in particular, show it is the revenue optimal Bayesian incentive-compatible (BIC), MMIC and 1-OCA-proof mechanism among a large class of mechanisms. We move beyond the myopic model to a model where users offer transaction fees for their transaction to be accepted, as well as report their urgency level by specifying the time to live (TTL) of the transaction, after which it expires. We show guarantees provided by the greedy allocation rule, as well as a better-performing non-myopic rule. The above analysis is stated in terms of a cryptocurrency TFM, but applies to other settings, such as cloud computing and decentralized "gig" economy, as well.
Partial Label (PL) learning refers to the task of learning from the partially labeled data, where each training instance is ambiguously equipped with a set of candidate labels but only one is valid. Advances in the recent deep PL learning literature have shown that the deep learning paradigms, e.g., self-training, contrastive learning, or class activate values, can achieve promising performance. Inspired by the impressive success of deep Semi-Supervised (SS) learning, we transform the PL learning problem into the SS learning problem, and propose a novel PL learning method, namely Partial Label learning with Semi-supervised Perspective (PLSP). Specifically, we first form the pseudo-labeled dataset by selecting a small number of reliable pseudo-labeled instances with high-confidence prediction scores and treating the remaining instances as pseudo-unlabeled ones. Then we design a SS learning objective, consisting of a supervised loss for pseudo-labeled instances and a semantic consistency regularization for pseudo-unlabeled instances. We further introduce a complementary regularization for those non-candidate labels to constrain the model predictions on them to be as small as possible. Empirical results demonstrate that PLSP significantly outperforms the existing PL baseline methods, especially on high ambiguity levels. Code available: //github.com/changchunli/PLSP.
Surrogate models have shown to be an extremely efficient aid in solving engineering problems that require repeated evaluations of an expensive computational model. They are built by sparsely evaluating the costly original model and have provided a way to solve otherwise intractable problems. A crucial aspect in surrogate modelling is the assumption of smoothness and regularity of the model to approximate. This assumption is however not always met in reality. For instance in civil or mechanical engineering, some models may present discontinuities or non-smoothness, e.g., in case of instability patterns such as buckling or snap-through. Building a single surrogate model capable of accounting for these fundamentally different behaviors or discontinuities is not an easy task. In this paper, we propose a three-stage approach for the approximation of non-smooth functions which combines clustering, classification and regression. The idea is to split the space following the localized behaviors or regimes of the system and build local surrogates that are eventually assembled. A sequence of well-known machine learning techniques are used: Dirichlet process mixtures models (DPMM), support vector machines and Gaussian process modelling. The approach is tested and validated on two analytical functions and a finite element model of a tensile membrane structure.
To address the widespread problem of uncivil behavior, many online discussion platforms employ human moderators to take action against objectionable content, such as removing it or placing sanctions on its authors. This reactive paradigm of taking action against already-posted antisocial content is currently the most common form of moderation, and has accordingly underpinned many recent efforts at introducing automation into the moderation process. Comparatively less work has been done to understand other moderation paradigms -- such as proactively discouraging the emergence of antisocial behavior rather than reacting to it -- and the role algorithmic support can play in these paradigms. In this work, we investigate such a proactive framework for moderation in a case study of a collaborative setting: Wikipedia Talk Pages. We employ a mixed methods approach, combining qualitative and design components for a holistic analysis. Through interviews with moderators, we find that despite a lack of technical and social support, moderators already engage in a number of proactive moderation behaviors, such as preemptively intervening in conversations to keep them on track. Further, we explore how automation could assist with this existing proactive moderation workflow by building a prototype tool, presenting it to moderators, and examining how the assistance it provides might fit into their workflow. The resulting feedback uncovers both strengths and drawbacks of the prototype tool and suggests concrete steps towards further developing such assisting technology so it can most effectively support moderators in their existing proactive moderation workflow.
Learned Bloom Filters, i.e., models induced from data via machine learning techniques and solving the approximate set membership problem, have recently been introduced with the aim of enhancing the performance of standard Bloom Filters, with special focus on space occupancy. Unlike in the classical case, the "complexity" of the data used to build the filter might heavily impact on its performance. Therefore, here we propose the first in-depth analysis, to the best of our knowledge, for the performance assessment of a given Learned Bloom Filter, in conjunction with a given classifier, on a dataset of a given classification complexity. Indeed, we propose a novel methodology, supported by software, for designing, analyzing and implementing Learned Bloom Filters in function of specific constraints on their multi-criteria nature (that is, constraints involving space efficiency, false positive rate, and reject time). Our experiments show that the proposed methodology and the supporting software are valid and useful: we find out that only two classifiers have desirable properties in relation to problems with different data complexity, and, interestingly, none of them has been considered so far in the literature. We also experimentally show that the Sandwiched variant of Learned Bloom filters is the most robust to data complexity and classifier performance variability, as well as those usually having smaller reject times. The software can be readily used to test new Learned Bloom Filter proposals, which can be compared with the best ones identified here.
Ranking and selection (R&S) is a popular model for studying discrete-event dynamic systems. It aims to select the best design (the design with the largest mean performance) from a finite set, where the mean of each design is unknown and has to be learned by samples. Great research efforts have been devoted to this problem in the literature for developing procedures with superior empirical performance and showing their optimality. In these efforts, myopic procedures were popular. They select the best design using a 'naive' mechanism of iteratively and myopically improving an approximation of the objective measure. Although they are based on simple heuristics and lack theoretical support, they turned out highly effective, and often achieved competitive empirical performance compared to procedures that were proposed later and shown to be asymptotically optimal. In this paper, we theoretically analyze these myopic procedures and prove that they also satisfy the optimality conditions of R&S, just like some other popular R&S methods. It explains the good performance of myopic procedures in various numerical tests, and provides good insight into the structure and theoretical development of efficient R&S procedures.
In congestion games, users make myopic routing decisions to jam each other, and the social planner with the full information designs mechanisms on information or payment side to regulate. However, it is difficult to obtain time-varying traffic conditions, and emerging crowdsourcing platforms (e.g., Waze and Google Maps) provide a convenient way for mobile users travelling on the paths to learn and share the traffic conditions over time. When congestion games meet mobile crowdsourcing, it is critical to incentive selfish users to change their myopic routing policy and reach the best exploitation-exploration trade-off. By considering a simple but fundamental parallel routing network with one deterministic path and multiple stochastic paths for atomic users, we prove that the myopic routing policy's price of anarchy (PoA) is larger than $\frac{1}{1-\rho}$, which can be arbitrarily large as discount factor $\rho\rightarrow1$. To remedy such huge efficiency loss, we propose a selective information disclosure (SID) mechanism: we only reveal the latest traffic information to users when they intend to over-explore the stochastic paths, while hiding such information when they want to under-explore. We prove that our mechanism reduces PoA to be less than $\frac{1}{1-\frac{\rho}{2}}$. Besides the worst-case performance, we further examine our mechanism's average-case performance by using extensive simulations.
We consider the problem of allocating $m$ indivisible chores to $n$ agents with additive disvaluation (cost) functions. It is easy to show that there are picking sequences that give every agent (that uses the greedy picking strategy) a bundle of chores of disvalue at most twice her share value (maximin share, MMS, for agents of equal entitlement, and anyprice share, APS, for agents of arbitrary entitlement). Aziz, Li and Wu (2022) designed picking sequences that improve this ratio to $\frac{5}{3}$ for the case of equal entitlement. We design picking sequences that improve the ratio to~1.733 for the case of arbitrary entitlement, and to $\frac{8}{5}$ for the case of equal entitlement. (In fact, computer assisted analysis suggests that the ratio is smaller than $1.543$ in the equal entitlement case.) We also prove a lower bound of $\frac{3}{2}$ on the obtainable ratio when $n$ is sufficiently large. Additional contributions of our work include improved guarantees in the equal entitlement case when $n$ is small; introduction of the chore share as a convenient proxy to other share notions for chores; introduction of ex-ante notions of envy for risk averse agents; enhancements to our picking sequences that eliminate such envy; showing that a known allocation algorithm (not based on picking sequences) for the equal entitlement case gives each agent a bundle of disvalue at most $\frac{4n-1}{3n}$ times her APS (previously, this ratio was shown for this algorithm with respect to the easier benchmark of the MMS).
In this work we discuss the problem of active learning. We present an approach that is based on A-optimal experimental design of ill-posed problems and show how one can optimally label a data set by partially probing it, and use it to train a deep network. We present two approaches that make different assumptions on the data set. The first is based on a Bayesian interpretation of the semi-supervised learning problem with the graph Laplacian that is used for the prior distribution and the second is based on a frequentist approach, that updates the estimation of the bias term based on the recovery of the labels. We demonstrate that this approach can be highly efficient for estimating labels and training a deep network.
The recently introduced framework of universal inference provides a new approach to constructing hypothesis tests and confidence regions that are valid in finite samples and do not rely on any specific regularity assumptions on the underlying statistical model. At the core of the methodology is a split likelihood ratio statistic, which is formed under data splitting and compared to a cleverly selected universal critical value. As this critical value can be very conservative, it is interesting to mitigate the potential loss of power by careful choice of the ratio according to which data are split. Motivated by this problem, we study the split likelihood ratio test under local alternatives and introduce the resulting class of noncentral split chi-square distributions. We investigate the properties of this new class of distributions and use it to numerically examine and propose an optimal choice of the data splitting ratio for tests of composite hypotheses of different dimensions.
In this work, we study a global quadrature scheme for analytic functions on compact intervals based on function values on quasi-uniform grids of quadrature nodes. In practice it is not always possible to sample functions at optimal nodes that give well-conditioned and quickly converging interpolatory quadrature rules at the same time. Therefore, we go beyond classical interpolatory quadrature by lowering the degree of the polynomial approximant and by applying auxiliary mapping functions that map the original quadrature nodes to more suitable fake nodes. More precisely, we investigate the combination of the Kosloff Tal-Ezer map and least-squares approximation (KTL) for numerical quadrature: a careful selection of the mapping parameter ensures stability of the scheme, a high accuracy of the approximation and, at the same time, an asymptotically optimal ratio between the degree of the polynomial and the spacing of the grid. We will investigate the properties of this KTL quadrature and focus on the symmetry of the quadrature weights, the limit relations for the mapping parameter, as well as the computation of the quadrature weights in the standard monomial and in the Chebyshev bases with help of a cosine transform. Numerical tests on equispaced nodes show that a static choice of the map's parameter improve the results of the composite trapezoidal rule, while a dynamic approach achieves larger stability and faster convergence, even when the sampling nodes are perturbed. From a computational point of view the proposed method is practical and can be implemented in a simple and efficient way.