亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Security and privacy are primary concerns in IoT management. Security breaches in IoT resources, such as smart sensors, can leak sensitive data and compromise the privacy of individuals. Effective IoT management requires a comprehensive approach to prioritize access security and data privacy protection. Digital twins create virtual representations of IoT resources. Blockchain adds decentralization, transparency, and reliability to IoT systems. This research integrates digital twins and blockchain to manage access to IoT data streaming. Digital twins are used to encapsulate data access and view configurations. Access is enabled on digital twins, not on IoT resources directly. Trust structures programmed as smart contracts are the ones that manage access to digital twins. Consequently, IoT resources are not exposed to third parties, and access security breaches can be prevented. Blockchain has been used to validate digital twins and store their configuration. The research presented in this paper enables multitenant access and customization of data streaming views and abstracts the complexity of data access management. This approach provides access and configuration security and data privacy protection.

相關內容

區塊(kuai)(kuai)鏈(Blockchain)是由節點(dian)參與(yu)的(de)(de)(de)分布式數據庫系統,它(ta)的(de)(de)(de)特(te)點(dian)是不可(ke)更改,不可(ke)偽造(zao),也可(ke)以將其(qi)理解為(wei)賬簿系統(ledger)。它(ta)是比特(te)幣的(de)(de)(de)一個重要概念,完(wan)整比特(te)幣區塊(kuai)(kuai)鏈的(de)(de)(de)副(fu)本,記錄了其(qi)代幣(token)的(de)(de)(de)每(mei)一筆交易(yi)。通過這些(xie)信息,我們(men)可(ke)以找到每(mei)一個地址,在(zai)歷(li)史上任(ren)何(he)一點(dian)所擁(yong)有的(de)(de)(de)價(jia)值。

知識薈萃

精品(pin)入門(men)和進階(jie)教(jiao)程(cheng)、論文和代碼(ma)整理(li)等(deng)

更多

查看相關(guan)VIP內容、論文、資訊等(deng)

Deep networks typically learn concepts via classifiers, which involves setting up a model and training it via gradient descent to fit the concept-labeled data. We will argue instead that learning a concept could be done by looking at its moment statistics matrix to generate a concrete representation or signature of that concept. These signatures can be used to discover structure across the set of concepts and could recursively produce higher-level concepts by learning this structure from those signatures. When the concepts are `intersected', signatures of the concepts can be used to find a common theme across a number of related `intersected' concepts. This process could be used to keep a dictionary of concepts so that inputs could correctly identify and be routed to the set of concepts involved in the (latent) generation of the input.

Price movements in financial markets are well known to be very noisy. As a result, even if there are, on occasion, exploitable patterns that could be picked up by machine-learning algorithms, these are obscured by feature and label noise rendering the predictions less useful, and risky in practice. Traditional rule-learning techniques developed for noisy data, such as CN2, would seek only high precision rules and refrain from making predictions where their antecedents did not apply. We apply a similar approach, where a model abstains from making a prediction on data points that it is uncertain on. During training, a cascade of such models are learned in sequence, similar to rule lists, with each model being trained only on data on which the previous model(s) were uncertain. Similar pruning of data takes place at test-time, with (higher accuracy) predictions being made albeit only on a fraction (support) of test-time data. In a financial prediction setting, such an approach allows decisions to be taken only when the ensemble model is confident, thereby reducing risk. We present results using traditional MLPs as well as differentiable decision trees, on synthetic data as well as real financial market data, to predict fixed-term returns using commonly used features. We submit that our approach is likely to result in better overall returns at a lower level of risk. In this context we introduce an utility metric to measure the average gain per trade, as well as the return adjusted for downside risk, both of which are improved significantly by our approach.

Single neurons in neural networks are often ``interpretable'' in that they represent individual, intuitively meaningful features. However, many neurons exhibit $\textit{mixed selectivity}$, i.e., they represent multiple unrelated features. A recent hypothesis proposes that features in deep networks may be represented in $\textit{superposition}$, i.e., on non-orthogonal axes by multiple neurons, since the number of possible interpretable features in natural data is generally larger than the number of neurons in a given network. Accordingly, we should be able to find meaningful directions in activation space that are not aligned with individual neurons. Here, we propose (1) an automated method for quantifying visual interpretability that is validated against a large database of human psychophysics judgments of neuron interpretability, and (2) an approach for finding meaningful directions in network activation space. We leverage these methods to discover directions in convolutional neural networks that are more intuitively meaningful than individual neurons, as we confirm and investigate in a series of analyses. Moreover, we apply the same method to two recent datasets of visual neural responses in the brain and find that our conclusions largely transfer to real neural data, suggesting that superposition might be deployed by the brain. This also provides a link with disentanglement and raises fundamental questions about robust, efficient and factorized representations in both artificial and biological neural systems.

Advances in robotic automation, high-performance computing (HPC), and artificial intelligence (AI) encourage us to conceive of science factories: large, general-purpose computation- and AI-enabled self-driving laboratories (SDLs) with the generality and scale needed both to tackle large discovery problems and to support thousands of scientists. Science factories require modular hardware and software that can be replicated for scale and (re)configured to support many applications. To this end, we propose a prototype modular science factory architecture in which reconfigurable modules encapsulating scientific instruments are linked with manipulators to form workcells, that can themselves be combined to form larger assemblages, and linked with distributed computing for simulation, AI model training and inference, and related tasks. Workflows that perform sets of actions on modules can be specified, and various applications, comprising workflows plus associated computational and data manipulation steps, can be run concurrently. We report on our experiences prototyping this architecture and applying it in experiments involving 15 different robotic apparatus, five applications (one in education, two in biology, two in materials), and a variety of workflows, across four laboratories. We describe the reuse of modules, workcells, and workflows in different applications, the migration of applications between workcells, and the use of digital twins, and suggest directions for future work aimed at yet more generality and scalability. Code and data are available at //ad-sdl.github.io/wei2023 and in the Supplementary Information

Sharding is essential for improving blockchain scalability. Existing protocols overlook diverse adversarial attacks, limiting transaction throughput. This paper presents Reticulum, a groundbreaking sharding protocol addressing this issue, boosting blockchain scalability. Reticulum employs a two-phase approach, adapting transaction throughput based on runtime adversarial attacks. It comprises "control" and "process" shards in two layers. Process shards contain at least one trustworthy node, while control shards have a majority of trusted nodes. In the first phase, transactions are written to blocks and voted on by nodes in process shards. Unanimously accepted blocks are confirmed. In the second phase, blocks without unanimous acceptance are voted on by control shards. Blocks are accepted if the majority votes in favor, eliminating first-phase opponents and silent voters. Reticulum uses unanimous voting in the first phase, involving fewer nodes, enabling more parallel process shards. Control shards finalize decisions and resolve disputes. Experiments confirm Reticulum's innovative design, providing high transaction throughput and robustness against various network attacks, outperforming existing sharding protocols for blockchain networks.

How to reduce compute and memory requirements of neural networks (NNs) without sacrificing performance? Many recent works use sparse Mixtures of Experts (MoEs) to build resource-efficient large language models (LMs). Here we introduce several novel perspectives on MoEs, presenting a general framework that unifies various methods to approximate two-layer NNs (e.g., feedforward blocks of Transformers), including product-key memories (PKMs). Leveraging insights from this framework, we propose methods to improve both MoEs and PKMs. Unlike prior work that compares MoEs with dense baselines under the compute-equal condition, our evaluation condition is parameter-equal, which is crucial to properly evaluate LMs. We show that our MoEs are competitive with the dense Transformer-XL on both the WikiText-103 and enwiki8 datasets at two different scales, while being much more resource efficient. This demonstrates that MoEs are relevant not only to extremely large LMs but also to any-scale resource-efficient LMs. Our code is public.

While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

Learning from a few examples remains a key challenge in machine learning. Despite recent advances in important domains such as vision and language, the standard supervised deep learning paradigm does not offer a satisfactory solution for learning new concepts rapidly from little data. In this work, we employ ideas from metric learning based on deep neural features and from recent advances that augment neural networks with external memories. Our framework learns a network that maps a small labelled support set and an unlabelled example to its label, obviating the need for fine-tuning to adapt to new class types. We then define one-shot learning problems on vision (using Omniglot, ImageNet) and language tasks. Our algorithm improves one-shot accuracy on ImageNet from 87.6% to 93.2% and from 88.0% to 93.8% on Omniglot compared to competing approaches. We also demonstrate the usefulness of the same model on language modeling by introducing a one-shot task on the Penn Treebank.

北京阿比特科技有限公司