亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent trends see a move away from a fixed-resource server-centric datacenter model to a more adaptable "disaggregated" datacenter model. These disaggregated datacenters can then dynamically group resources to the specific requirements of an incoming workload, thereby improving efficiency. To properly utilize these disaggregated datacenters, workload allocation techniques must examine the current state of the datacenter and choose resources that not only optimize the current workload request, but future ones. Since disaggregated datacenters are severely bottlenecked by the available network resources, our work proposes a heuristic-based approach called RISA, which significantly reduces the network usage of workload allocations in disaggregated datacenters. Compared to the state-of-the-art, RISA reduces the power consumption for optical components by 33% and reduces the average CPU-RAM round-trip latency by 50%. Additionally, RISA significantly outperforms the state-of-the-art in terms of execution time.

相關內容

We develop a generative attention-based approach to modeling structured entities comprising different property types, such as numerical, categorical, string, and composite. This approach handles such heterogeneous data through a mixed continuous-discrete diffusion process over the properties. Our flexible framework can model entities with arbitrary hierarchical properties, enabling applications to structured Knowledge Base (KB) entities and tabular data. Our approach obtains state-of-the-art performance on a majority of cases across 15 datasets. In addition, experiments with a device KB and a nuclear physics dataset demonstrate the model's ability to learn representations useful for entity completion in diverse settings. This has many downstream use cases, including modeling numerical properties with high accuracy - critical for science applications, which also benefit from the model's inherent probabilistic nature.

Traditional executable delivery models pose challenges for IoT devices with limited storage, necessitating the download of complete executables and dependencies. Network solutions like NFS, designed for data files, encounter high IO overhead for irregular access patterns. This paper introduces SYSFLOW, a lightweight network-based executable delivery system for IoT. SYSFLOW delivers on-demand, redirecting local disk IO to the server through optimized network IO. To optimize cache hit rates, SYSFLOW employs server-side action-based prefetching, reducing latency by 45.1% to 75.8% compared to native Linux filesystems on SD cards. In wired environments, SYSFLOW's latency is up to 67.7% lower than NFS. In wireless scenarios, SYSFLOW performs 22.9% worse than Linux, comparable with Linux and outperforming NFS by up to 60.7%. While SYSFLOW's power consumption may be 6.7% higher than NFS, it offers energy savings due to lower processing time.

Labeling neural network submodules with human-legible descriptions is useful for many downstream tasks: such descriptions can surface failures, guide interventions, and perhaps even explain important model behaviors. To date, most mechanistic descriptions of trained networks have involved small models, narrowly delimited phenomena, and large amounts of human labor. Labeling all human-interpretable sub-computations in models of increasing size and complexity will almost certainly require tools that can generate and validate descriptions automatically. Recently, techniques that use learned models in-the-loop for labeling have begun to gain traction, but methods for evaluating their efficacy are limited and ad-hoc. How should we validate and compare open-ended labeling tools? This paper introduces FIND (Function INterpretation and Description), a benchmark suite for evaluating the building blocks of automated interpretability methods. FIND contains functions that resemble components of trained neural networks, and accompanying descriptions of the kind we seek to generate. The functions span textual and numeric domains, and involve a range of real-world complexities. We evaluate methods that use pretrained language models (LMs) to produce descriptions of function behavior in natural language and code. Additionally, we introduce a new interactive method in which an Automated Interpretability Agent (AIA) generates function descriptions. We find that an AIA, built from an LM with black-box access to functions, can infer function structure, acting as a scientist by forming hypotheses, proposing experiments, and updating descriptions in light of new data. However, AIA descriptions tend to capture global function behavior and miss local details. These results suggest that FIND will be useful for evaluating more sophisticated interpretability methods before they are applied to real-world models.

Few-shot class-incremental learning (FSCIL) struggles to incrementally recognize novel classes from few examples without catastrophic forgetting of old classes or overfitting to new classes. We propose TLCE, which ensembles multiple pre-trained models to improve separation of novel and old classes. TLCE minimizes interference between old and new classes by mapping old class images to quasi-orthogonal prototypes using episodic training. It then ensembles diverse pre-trained models to better adapt to novel classes despite data imbalance. Extensive experiments on various datasets demonstrate that our transfer learning ensemble approach outperforms state-of-the-art FSCIL methods.

Privacy-preserving inference in edge computing paradigms encourages the users of machine-learning services to locally run a model on their private input, for a target task, and only share the model's outputs with the server. We study how a vicious server can reconstruct the input data by observing only the model's outputs, while keeping the target accuracy very close to that of a honest server: by jointly training a target model (to run at users' side) and an attack model for data reconstruction (to secretly use at server's side). We present a new measure to assess the reconstruction risk in edge inference. Our evaluations on six benchmark datasets demonstrate that the model's input can be approximately reconstructed from the outputs of a single target inference. We propose a potential defense mechanism that helps to distinguish vicious versus honest classifiers at inference time. We discuss open challenges and directions for future studies and release our code as a benchmark for future work.

Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.

To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

北京阿比特科技有限公司