亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose reCSE, a self supervised contrastive learning sentence representation framework based on feature reshaping. This framework is different from the current advanced models that use discrete data augmentation methods, but instead reshapes the input features of the original sentence, aggregates the global information of each token in the sentence, and alleviates the common problems of representation polarity and GPU memory consumption linear increase in current advanced models. In addition, our reCSE has achieved competitive performance in semantic similarity tasks. And the experiment proves that our proposed feature reshaping method has strong universality, which can be transplanted to other self supervised contrastive learning frameworks and enhance their representation ability, even achieving state-of-the-art performance. Our code is available at //github.com/heavenhellchen/reCSE.

相關內容

We introduce AmbigNLG, a novel task designed to tackle the challenge of task ambiguity in instructions for Natural Language Generation (NLG). Ambiguous instructions often impede the performance of Large Language Models (LLMs), especially in complex NLG tasks. To tackle this issue, we propose an ambiguity taxonomy that categorizes different types of instruction ambiguities and refines initial instructions with clearer specifications. Accompanying this task, we present AmbigSNI-NLG, a dataset comprising 2,500 instances annotated to facilitate research in AmbigNLG. Through comprehensive experiments with state-of-the-art LLMs, we demonstrate that our method significantly enhances the alignment of generated text with user expectations, achieving up to a 15.02-point increase in ROUGE scores. Our findings highlight the critical importance of addressing task ambiguity to fully harness the capabilities of LLMs in NLG tasks. Furthermore, we confirm the effectiveness of our method in practical settings involving interactive ambiguity mitigation with users, underscoring the benefits of leveraging LLMs for interactive clarification.

When solving inverse problems, it is increasingly popular to use pre-trained diffusion models as plug-and-play priors. This framework can accommodate different forward models without re-training while preserving the generative capability of diffusion models. Despite their success in many imaging inverse problems, most existing methods rely on privileged information such as derivative, pseudo-inverse, or full knowledge about the forward model. This reliance poses a substantial limitation that restricts their use in a wide range of problems where such information is unavailable, such as in many scientific applications. To address this issue, we propose Ensemble Kalman Diffusion Guidance (EnKG) for diffusion models, a derivative-free approach that can solve inverse problems by only accessing forward model evaluations and a pre-trained diffusion model prior. We study the empirical effectiveness of our method across various inverse problems, including scientific settings such as inferring fluid flows and astronomical objects, which are highly non-linear inverse problems that often only permit black-box access to the forward model.

Robots' ability to follow language instructions and execute diverse 3D tasks is vital in robot learning. Traditional imitation learning-based methods perform well on seen tasks but struggle with novel, unseen ones due to variability. Recent approaches leverage large foundation models to assist in understanding novel tasks, thereby mitigating this issue. However, these methods lack a task-specific learning process, which is essential for an accurate understanding of 3D environments, often leading to execution failures. In this paper, we introduce GravMAD, a sub-goal-driven, language-conditioned action diffusion framework that combines the strengths of imitation learning and foundation models. Our approach breaks tasks into sub-goals based on language instructions, allowing auxiliary guidance during both training and inference. During training, we introduce Sub-goal Keypose Discovery to identify key sub-goals from demonstrations. Inference differs from training, as there are no demonstrations available, so we use pre-trained foundation models to bridge the gap and identify sub-goals for the current task. In both phases, GravMaps are generated from sub-goals, providing flexible 3D spatial guidance compared to fixed 3D positions. Empirical evaluations on RLBench show that GravMAD significantly outperforms state-of-the-art methods, with a 28.63% improvement on novel tasks and a 13.36% gain on tasks encountered during training. These results demonstrate GravMAD's strong multi-task learning and generalization in 3D manipulation. Video demonstrations are available at: //gravmad.github.io.

Efficient inference in high-dimensional models is a central challenge in machine learning. We introduce the Gaussian Ensemble Belief Propagation (GEnBP) algorithm, which combines the strengths of the Ensemble Kalman Filter (EnKF) and Gaussian Belief Propagation (GaBP) to address this challenge. GEnBP updates ensembles of prior samples into posterior samples by passing low-rank local messages over the edges of a graphical model, enabling efficient handling of high-dimensional states, parameters, and complex, noisy, black-box generation processes. By utilizing local message passing within a graphical model structure, GEnBP effectively manages complex dependency structures and remains computationally efficient even when the ensemble size is much smaller than the inference dimension - a common scenario in spatiotemporal modeling, image processing, and physical model inversion. We demonstrate that GEnBP can be applied to various problem structures, including data assimilation, system identification, and hierarchical models, and show through experiments that it outperforms existing methods in terms of accuracy and computational efficiency. Supporting code is available at //github.com/danmackinlay/GEnBP

The task of automated code review has recently gained a lot of attention from the machine learning community. However, current review comment evaluation metrics rely on comparisons with a human-written reference for a given code change (also called a diff), even though code review is a one-to-many problem like generation and summarization with many "valid reviews" for a diff. To tackle these issues we develop a CRScore - a reference-free metric to measure dimensions of review quality like conciseness, comprehensiveness, and relevance. We design CRScore to evaluate reviews in a way that is grounded in claims and potential issues detected in the code by LLMs and static analyzers. We demonstrate that CRScore can produce valid, fine-grained scores of review quality that have the greatest alignment with human judgment (0.54 Spearman correlation) and are more sensitive than reference-based metrics. We also release a corpus of 2.6k human-annotated review quality scores for machine-generated and GitHub review comments to support the development of automated metrics.

As a popular multilingual and multitask pre-trained speech model, Whisper has the problem of curse of multilinguality. To enhance multilingual capabilities in small Whisper models, we propose DQ-Whisper, a novel joint distillation and quantization framework to compress Whisper for efficient inference. Firstly, we propose a novel dynamic matching distillation strategy. Then, a quantization-aware distillation framework is introduced to integrate quantization with distillation. Experimental results on various multilingual datasets show that our suggested distillation approach can effectively enhance the multilingual capabilities of small Whisper models without increasing computational costs. Up to 5.18x reduction in model size is achieved with marginal performance degradation. In addition, quantization is compatible with distillation, which can result in a higher compression rate.

Hyperparameters are a critical factor in reliably training well-performing reinforcement learning (RL) agents. Unfortunately, developing and evaluating automated approaches for tuning such hyperparameters is both costly and time-consuming. As a result, such approaches are often only evaluated on a single domain or algorithm, making comparisons difficult and limiting insights into their generalizability. We propose ARLBench, a benchmark for hyperparameter optimization (HPO) in RL that allows comparisons of diverse HPO approaches while being highly efficient in evaluation. To enable research into HPO in RL, even in settings with low compute resources, we select a representative subset of HPO tasks spanning a variety of algorithm and environment combinations. This selection allows for generating a performance profile of an automated RL (AutoRL) method using only a fraction of the compute previously necessary, enabling a broader range of researchers to work on HPO in RL. With the extensive and large-scale dataset on hyperparameter landscapes that our selection is based on, ARLBench is an efficient, flexible, and future-oriented foundation for research on AutoRL. Both the benchmark and the dataset are available at //github.com/automl/arlbench.

The disconnect between tokenizer creation and model training in language models allows for specific inputs, such as the infamous SolidGoldMagikarp token, to induce unwanted model behaviour. Although such `glitch tokens', tokens present in the tokenizer vocabulary but that are nearly or entirely absent during model training, have been observed across various models, a reliable method to identify and address them has been missing. We present a comprehensive analysis of Large Language Model tokenizers, specifically targeting this issue of detecting under-trained tokens. Through a combination of tokenizer analysis, model weight-based indicators, and prompting techniques, we develop novel and effective methods for automatically detecting these problematic tokens. Our findings demonstrate the prevalence of such tokens across a diverse set of models and provide insights into improving the efficiency and safety of language models.

We present a novel autonomous driving framework, DualAD, designed to imitate human reasoning during driving. DualAD comprises two layers: a rule-based motion planner at the bottom layer that handles routine driving tasks requiring minimal reasoning, and an upper layer featuring a rule-based text encoder that converts driving scenarios from absolute states into text description. This text is then processed by a large language model (LLM) to make driving decisions. The upper layer intervenes in the bottom layer's decisions when potential danger is detected, mimicking human reasoning in critical situations. Closed-loop experiments demonstrate that DualAD, using a zero-shot pre-trained model, significantly outperforms rule-based motion planners that lack reasoning abilities. Our experiments also highlight the effectiveness of the text encoder, which considerably enhances the model's scenario understanding. Additionally, the integrated DualAD model improves with stronger LLMs, indicating the framework's potential for further enhancement. We make code and benchmarks publicly available.

State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.

北京阿比特科技有限公司