Image research has shown substantial attention in deblurring networks in recent years. Yet, their practical usage in real-world deblurring, especially motion blur, remains limited due to the lack of pixel-aligned training triplets (background, blurred image, and blur heat map) and restricted information inherent in blurred images. This paper presents a simple yet efficient framework to synthetic and restore motion blur images using Inertial Measurement Unit (IMU) data. Notably, the framework includes a strategy for training triplet generation, and a Gyroscope-Aided Motion Deblurring (GAMD) network for blurred image restoration. The rationale is that through harnessing IMU data, we can determine the transformation of the camera pose during the image exposure phase, facilitating the deduction of the motion trajectory (aka. blur trajectory) for each point inside the three-dimensional space. Thus, the synthetic triplets using our strategy are inherently close to natural motion blur, strictly pixel-aligned, and mass-producible. Through comprehensive experiments, we demonstrate the advantages of the proposed framework: only two-pixel errors between our synthetic and real-world blur trajectories, a marked improvement (around 33.17%) of the state-of-the-art deblurring method MIMO on Peak Signal-to-Noise Ratio (PSNR).
Spatial autoregressive (SAR) models are important tools for studying network effects. However, with an increasing emphasis on data privacy, data providers often implement privacy protection measures that make classical SAR models inapplicable. In this study, we introduce a privacy-protected SAR model with noise-added response and covariates to meet privacy-protection requirements. However, in this scenario, the traditional quasi-maximum likelihood estimator becomes infeasible because the likelihood function cannot be formulated. To address this issue, we first consider an explicit expression for the likelihood function with only noise-added responses. However, the derivatives are biased owing to the noise in the covariates. Therefore, we develop techniques that can correct the biases introduced by noise. Correspondingly, a Newton-Raphson-type algorithm is proposed to obtain the estimator, leading to a corrected likelihood estimator. To further enhance computational efficiency, we introduce a corrected least squares estimator based on the idea of bias correction. These two estimation methods ensure both data security and the attainment of statistically valid estimators. Theoretical analysis of both estimators is carefully conducted, and statistical inference methods are discussed. The finite sample performances of different methods are demonstrated through extensive simulations and the analysis of a real dataset.
Domain incremental learning (DIL) has been discussed in previous studies on deep neural network models for classification. In DIL, we assume that samples on new domains are observed over time. The models must classify inputs on all domains. In practice, however, we may encounter a situation where we need to perform DIL under the constraint that the samples on the new domain are observed only infrequently. Therefore, in this study, we consider the extreme case where we have only one sample from the new domain, which we call one-shot DIL. We first empirically show that existing DIL methods do not work well in one-shot DIL. We have analyzed the reason for this failure through various investigations. According to our analysis, we clarify that the difficulty of one-shot DIL is caused by the statistics in the batch normalization layers. Therefore, we propose a technique regarding these statistics and demonstrate the effectiveness of our technique through experiments on open datasets.
The vector autoregression (VAR) has been widely used in system identification, econometrics, natural science, and many other areas. However, when the state dimension becomes large the parameter dimension explodes. So rank reduced modelling is attractive and is well developed. But a fundamental requirement in almost all applications is stability of the fitted model. And this has not been addressed in the rank reduced case. Here, we develop, for the first time, a closed-form formula for an estimator of a rank reduced transition matrix which is guaranteed to be stable. We show that our estimator is consistent and asymptotically statistically efficient and illustrate it in comparative simulations.
In the rapidly evolving landscape of artificial intelligence, multimodal learning systems (MMLS) have gained traction for their ability to process and integrate information from diverse modality inputs. Their expanding use in vital sectors such as healthcare has made safety assurance a critical concern. However, the absence of systematic research into their safety is a significant barrier to progress in this field. To bridge the gap, we present the first taxonomy that systematically categorizes and assesses MMLS safety. This taxonomy is structured around four fundamental pillars that are critical to ensuring the safety of MMLS: robustness, alignment, monitoring, and controllability. Leveraging this taxonomy, we review existing methodologies, benchmarks, and the current state of research, while also pinpointing the principal limitations and gaps in knowledge. Finally, we discuss unique challenges in MMLS safety. In illuminating these challenges, we aim to pave the way for future research, proposing potential directions that could lead to significant advancements in the safety protocols of MMLS.
We consider a family of two-valued "fully evaluated left-sequential logics" (FELs), of which Free FEL (defined by Staudt in 2012) is most distinguishing (weakest) and immune to atomic side effects. Next is Memorising FEL, in which evaluations of subexpressions are memorised. The following stronger logic is Conditional FEL (inspired by Guzm\'an and Squier's Conditional logic, 1990). The strongest FEL is static FEL, a sequential version of propositional logic. We use evaluation trees as a simple, intuitive semantics and provide complete axiomatisations for closed terms (left-sequential propositional expressions). For each FEL except Static FEL, we also define its three-valued version, with a constant U for "undefinedness" and again provide complete, independent aziomatisations, each one containing two additional axioms for U on top of the axiomatisations of the two-valued case. In this setting, the strongest FEL is equivalent to Bochvar's strict logic.
Robotic surgery has reached a high level of maturity and has become an integral part of standard surgical care. However, existing surgeon consoles are bulky and take up valuable space in the operating room, present challenges for surgical team coordination, and their proprietary nature makes it difficult to take advantage of recent technological advances, especially in virtual and augmented reality. One potential area for further improvement is the integration of modern sensory gloves into robotic platforms, allowing surgeons to control robotic arms directly with their hand movements intuitively. We propose one such system that combines an HTC Vive tracker, a Manus Meta Prime 3 XR sensory glove, and God Vision wireless smart glasses. The system controls one arm of a da Vinci surgical robot. In addition to moving the arm, the surgeon can use fingers to control the end-effector of the surgical instrument. Hand gestures are used to implement clutching and similar functions. In particular, we introduce clutching of the instrument orientation, a functionality not available in the da Vinci system. The vibrotactile elements of the glove are used to provide feedback to the user when gesture commands are invoked. A preliminary evaluation of the system shows that it has excellent tracking accuracy and allows surgeons to efficiently perform common surgical training tasks with minimal practice with the new interface; this suggests that the interface is highly intuitive. The proposed system is inexpensive, allows rapid prototyping, and opens opportunities for further innovations in the design of surgical robot interfaces.
With the rise of deep convolutional neural networks, object detection has achieved prominent advances in past years. However, such prosperity could not camouflage the unsatisfactory situation of Small Object Detection (SOD), one of the notoriously challenging tasks in computer vision, owing to the poor visual appearance and noisy representation caused by the intrinsic structure of small targets. In addition, large-scale dataset for benchmarking small object detection methods remains a bottleneck. In this paper, we first conduct a thorough review of small object detection. Then, to catalyze the development of SOD, we construct two large-scale Small Object Detection dAtasets (SODA), SODA-D and SODA-A, which focus on the Driving and Aerial scenarios respectively. SODA-D includes 24704 high-quality traffic images and 277596 instances of 9 categories. For SODA-A, we harvest 2510 high-resolution aerial images and annotate 800203 instances over 9 classes. The proposed datasets, as we know, are the first-ever attempt to large-scale benchmarks with a vast collection of exhaustively annotated instances tailored for multi-category SOD. Finally, we evaluate the performance of mainstream methods on SODA. We expect the released benchmarks could facilitate the development of SOD and spawn more breakthroughs in this field. Datasets and codes will be available soon at: \url{//shaunyuan22.github.io/SODA}.
Recently, various auxiliary tasks have been proposed to accelerate representation learning and improve sample efficiency in deep reinforcement learning (RL). However, existing auxiliary tasks do not take the characteristics of RL problems into consideration and are unsupervised. By leveraging returns, the most important feedback signals in RL, we propose a novel auxiliary task that forces the learnt representations to discriminate state-action pairs with different returns. Our auxiliary loss is theoretically justified to learn representations that capture the structure of a new form of state-action abstraction, under which state-action pairs with similar return distributions are aggregated together. In low data regime, our algorithm outperforms strong baselines on complex tasks in Atari games and DeepMind Control suite, and achieves even better performance when combined with existing auxiliary tasks.
Recently, neural networks have been widely used in e-commerce recommender systems, owing to the rapid development of deep learning. We formalize the recommender system as a sequential recommendation problem, intending to predict the next items that the user might be interacted with. Recent works usually give an overall embedding from a user's behavior sequence. However, a unified user embedding cannot reflect the user's multiple interests during a period. In this paper, we propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec. Our multi-interest module captures multiple interests from user behavior sequences, which can be exploited for retrieving candidate items from the large-scale item pool. These items are then fed into an aggregation module to obtain the overall recommendation. The aggregation module leverages a controllable factor to balance the recommendation accuracy and diversity. We conduct experiments for the sequential recommendation on two real-world datasets, Amazon and Taobao. Experimental results demonstrate that our framework achieves significant improvements over state-of-the-art models. Our framework has also been successfully deployed on the offline Alibaba distributed cloud platform.
Knowledge graph (KG) embeddings learn low-dimensional representations of entities and relations to predict missing facts. KGs often exhibit hierarchical and logical patterns which must be preserved in the embedding space. For hierarchical data, hyperbolic embedding methods have shown promise for high-fidelity and parsimonious representations. However, existing hyperbolic embedding methods do not account for the rich logical patterns in KGs. In this work, we introduce a class of hyperbolic KG embedding models that simultaneously capture hierarchical and logical patterns. Our approach combines hyperbolic reflections and rotations with attention to model complex relational patterns. Experimental results on standard KG benchmarks show that our method improves over previous Euclidean- and hyperbolic-based efforts by up to 6.1% in mean reciprocal rank (MRR) in low dimensions. Furthermore, we observe that different geometric transformations capture different types of relations while attention-based transformations generalize to multiple relations. In high dimensions, our approach yields new state-of-the-art MRRs of 49.6% on WN18RR and 57.7% on YAGO3-10.