亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a probabilistic reduced-dimensional vector autoregressive (PredVAR) model to extract low-dimensional dynamics from high-dimensional noisy data. The model utilizes an oblique projection to partition the measurement space into a subspace that accommodates the reduced-dimensional dynamics and a complementary static subspace. An optimal oblique decomposition is derived for the best predictability regarding prediction error covariance. Building on this, we develop an iterative PredVAR algorithm using maximum likelihood and the expectation-maximization (EM) framework. This algorithm alternately updates the estimates of the latent dynamics and optimal oblique projection, yielding dynamic latent variables with rank-ordered predictability and an explicit latent VAR model that is consistent with the outer projection model. The superior performance and efficiency of the proposed approach are demonstrated using data sets from a synthesized Lorenz system and an industrial process from Eastman Chemical.

相關內容

In this paper, we explore the impact of augmenting pre-trained Encoder-Decoder models, specifically T5, with linguistic knowledge for the prediction of a target task. In particular, we investigate whether fine-tuning a T5 model on an intermediate task that predicts structural linguistic properties of sentences modifies its performance in the target task of predicting sentence-level complexity. Our study encompasses diverse experiments conducted on Italian and English datasets, employing both monolingual and multilingual T5 models at various sizes. Results obtained for both languages and in cross-lingual configurations show that linguistically motivated intermediate fine-tuning has generally a positive impact on target task performance, especially when applied to smaller models and in scenarios with limited data availability.

With the rapid development of Large Language Models (LLMs), various explorations have arisen to utilize LLMs capability of context understanding on recommender systems. While pioneering strategies have primarily transformed traditional recommendation tasks into challenges of natural language generation, there has been a relative scarcity of exploration in the domain of session-based recommendation (SBR) due to its specificity. SBR has been primarily dominated by Graph Neural Networks, which have achieved many successful outcomes due to their ability to capture both the implicit and explicit relationships between adjacent behaviors. The structural nature of graphs contrasts with the essence of natural language, posing a significant adaptation gap for LLMs. In this paper, we introduce large language models with graphical Session-Based recommendation, named LLMGR, an effective framework that bridges the aforementioned gap by harmoniously integrating LLMs with Graph Neural Networks (GNNs) for SBR tasks. This integration seeks to leverage the complementary strengths of LLMs in natural language understanding and GNNs in relational data processing, leading to a more powerful session-based recommender system that can understand and recommend items within a session. Moreover, to endow the LLM with the capability to empower SBR tasks, we design a series of prompts for both auxiliary and major instruction tuning tasks. These prompts are crafted to assist the LLM in understanding graph-structured data and align textual information with nodes, effectively translating nuanced user interactions into a format that can be understood and utilized by LLM architectures. Extensive experiments on three real-world datasets demonstrate that LLMGR outperforms several competitive baselines, indicating its effectiveness in enhancing SBR tasks and its potential as a research direction for future exploration.

In this paper, we adopt conformal prediction, a distribution-free uncertainty quantification (UQ) framework, to obtain confidence prediction intervals with coverage guarantees for Deep Operator Network (DeepONet) regression. Initially, we enhance the uncertainty quantification frameworks (B-DeepONet and Prob-DeepONet) previously proposed by the authors by using split conformal prediction. By combining conformal prediction with our Prob- and B-DeepONets, we effectively quantify uncertainty by generating rigorous confidence intervals for DeepONet prediction. Additionally, we design a novel Quantile-DeepONet that allows for a more natural use of split conformal prediction. We refer to this distribution-free effective uncertainty quantification framework as split conformal Quantile-DeepONet regression. Finally, we demonstrate the effectiveness of the proposed methods using various ordinary, partial differential equation numerical examples, and multi-fidelity learning.

In this paper, we introduce Kun, a novel approach for creating high-quality instruction-tuning datasets for large language models (LLMs) without relying on manual annotations. Adapting a self-training algorithm based on instruction back-translation and answer polishment, Kun leverages unlabelled data from diverse sources such as Wudao, Wanjuan, and SkyPile to generate a substantial dataset of over a million Chinese instructional data points. This approach significantly deviates from traditional methods by using a self-curation process to refine and select the most effective instruction-output pairs. Our experiments with the 6B-parameter Yi model across various benchmarks demonstrate Kun's robustness and scalability. Our method's core contributions lie in its algorithmic advancement, which enhances data retention and clarity, and its innovative data generation approach that substantially reduces the reliance on costly and time-consuming manual annotations. This methodology presents a scalable and efficient solution for improving the instruction-following capabilities of LLMs, with significant implications for their application across diverse fields. The code and dataset can be found at //github.com/Zheng0428/COIG-Kun

In this paper, we present an entropy-stable (ES) discretization using a nodal discontinuous Galerkin (DG) method for the ideal multi-ion magneto-hydrodynamics (MHD) equations. We start by performing a continuous entropy analysis of the ideal multi-ion MHD system, described by, e.g., Toth (2010) [Multi-Ion Magnetohydrodynamics], which describes the motion of multi-ion plasmas with independent momentum and energy equations for each ion species. Following the continuous entropy analysis, we propose an algebraic manipulation to the multi-ion MHD system, such that entropy consistency can be transferred from the continuous analysis to its discrete approximation. Moreover, we augment the system of equations with a generalized Lagrange multiplier (GLM) technique to have an additional cleaning mechanism of the magnetic field divergence error. We first derive robust entropy-conservative (EC) fluxes for the alternative formulation of the multi-ion GLM-MHD system that satisfy a Tadmor-type condition and are consistent with existing EC fluxes for single-fluid GLM-MHD equations. Using these numerical two-point fluxes, we construct high-order EC and ES DG discretizations of the ideal multi-ion MHD system using collocated Legendre--Gauss--Lobatto summation-by-parts (SBP) operators. The resulting nodal DG schemes satisfy the second-law of thermodynamics at the semi-discrete level, while maintaining high-order convergence and local node-wise conservation properties. We demonstrate the high-order convergence, and the EC and ES properties of our scheme with numerical validation experiments. Moreover, we demonstrate the importance of the GLM divergence technique and the ES discretization to improve the robustness properties of a DG discretization of the multi-ion MHD system by solving a challenging magnetized Kelvin-Helmholtz instability problem that exhibits MHD turbulence.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司