The operational environments in which a mobile robot executes its missions often exhibit non-flat terrain characteristics, encompassing outdoor and indoor settings featuring ramps and slopes. In such scenarios, the conventional methodologies employed for localization encounter novel challenges and limitations. This study delineates a localization framework incorporating ground elevation and inclination considerations, deviating from traditional 2D localization paradigms that may falter in such contexts. In our proposed approach, the map encompasses elevation and spatial occupancy information, employing Gridmaps and Octomaps. At the same time, the perception model is designed to accommodate the robot's inclined orientation and the potential presence of ground as an obstacle, besides usual structural and dynamic obstacles. We have developed and rigorously validated our approach within Nav2, and esteemed open-source framework renowned for robot navigation. Our findings demonstrate that our methodology represents a viable and effective alternative for mobile robots operating in challenging outdoor environments or intrincate terrains.
Accurate 3D object detection (3DOD) is crucial for safe navigation of complex environments by autonomous robots. Regressing accurate 3D bounding boxes in cluttered environments based on sparse LiDAR data is however a highly challenging problem. We address this task by exploring recent advances in conditional energy-based models (EBMs) for probabilistic regression. While methods employing EBMs for regression have demonstrated impressive performance on 2D object detection in images, these techniques are not directly applicable to 3D bounding boxes. In this work, we therefore design a differentiable pooling operator for 3D bounding boxes, serving as the core module of our EBM network. We further integrate this general approach into the state-of-the-art 3D object detector SA-SSD. On the KITTI dataset, our proposed approach consistently outperforms the SA-SSD baseline across all 3DOD metrics, demonstrating the potential of EBM-based regression for highly accurate 3DOD. Code is available at //github.com/fregu856/ebms_3dod.
Offline meta-reinforcement learning (OMRL) utilizes pre-collected offline datasets to enhance the agent's generalization ability on unseen tasks. However, the context shift problem arises due to the distribution discrepancy between the contexts used for training (from the behavior policy) and testing (from the exploration policy). The context shift problem leads to incorrect task inference and further deteriorates the generalization ability of the meta-policy. Existing OMRL methods either overlook this problem or attempt to mitigate it with additional information. In this paper, we propose a novel approach called Context Shift Reduction for OMRL (CSRO) to address the context shift problem with only offline datasets. The key insight of CSRO is to minimize the influence of policy in context during both the meta-training and meta-test phases. During meta-training, we design a max-min mutual information representation learning mechanism to diminish the impact of the behavior policy on task representation. In the meta-test phase, we introduce the non-prior context collection strategy to reduce the effect of the exploration policy. Experimental results demonstrate that CSRO significantly reduces the context shift and improves the generalization ability, surpassing previous methods across various challenging domains.
Controlling chatbot utterance generation with multiple attributes such as personalities, emotions and dialogue acts is a practically useful but under-studied problem. We propose a novel framework called DASC that possesses strong controllability with a weighted decoding paradigm, while improving generation quality with the grounding in an attribute semantics space. Generation with multiple attributes is then intuitively implemented with an interpolation of multiple attribute embeddings, which results in substantial reduction in the model sizes. Experiments show that DASC can achieve high control accuracy in generation task with the simultaneous control of 3 aspects while also producing interesting and reasonably sensible responses, even in an out-of-distribution robustness test.
Grasping occluded objects in cluttered environments is an essential component in complex robotic manipulation tasks. In this paper, we introduce an AffordanCE-driven Next-Best-View planning policy (ACE-NBV) that tries to find a feasible grasp for target object via continuously observing scenes from new viewpoints. This policy is motivated by the observation that the grasp affordances of an occluded object can be better-measured under the view when the view-direction are the same as the grasp view. Specifically, our method leverages the paradigm of novel view imagery to predict the grasps affordances under previously unobserved view, and select next observation view based on the highest imagined grasp quality of the target object. The experimental results in simulation and on a real robot demonstrate the effectiveness of the proposed affordance-driven next-best-view planning policy. Project page: //sszxc.net/ace-nbv/.
Self-driving software pipelines include components that are learned from a significant number of training examples, yet it remains challenging to evaluate the overall system's safety and generalization performance. Together with scaling up the real-world deployment of autonomous vehicles, it is of critical importance to automatically find simulation scenarios where the driving policies will fail. We propose a method that efficiently generates adversarial simulation scenarios for autonomous driving by solving an optimal control problem that aims to maximally perturb the policy from its nominal trajectory. Given an image-based driving policy, we show that we can inject new objects in a neural rendering representation of the deployment scene, and optimize their texture in order to generate adversarial sensor inputs to the policy. We demonstrate that adversarial scenarios discovered purely in the neural renderer (surrogate scene) can often be successfully transferred to the deployment scene, without further optimization. We demonstrate this transfer occurs both in simulated and real environments, provided the learned surrogate scene is sufficiently close to the deployment scene.
The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.
Seamlessly interacting with humans or robots is hard because these agents are non-stationary. They update their policy in response to the ego agent's behavior, and the ego agent must anticipate these changes to co-adapt. Inspired by humans, we recognize that robots do not need to explicitly model every low-level action another agent will make; instead, we can capture the latent strategy of other agents through high-level representations. We propose a reinforcement learning-based framework for learning latent representations of an agent's policy, where the ego agent identifies the relationship between its behavior and the other agent's future strategy. The ego agent then leverages these latent dynamics to influence the other agent, purposely guiding them towards policies suitable for co-adaptation. Across several simulated domains and a real-world air hockey game, our approach outperforms the alternatives and learns to influence the other agent.
To solve the information explosion problem and enhance user experience in various online applications, recommender systems have been developed to model users preferences. Although numerous efforts have been made toward more personalized recommendations, recommender systems still suffer from several challenges, such as data sparsity and cold start. In recent years, generating recommendations with the knowledge graph as side information has attracted considerable interest. Such an approach can not only alleviate the abovementioned issues for a more accurate recommendation, but also provide explanations for recommended items. In this paper, we conduct a systematical survey of knowledge graph-based recommender systems. We collect recently published papers in this field and summarize them from two perspectives. On the one hand, we investigate the proposed algorithms by focusing on how the papers utilize the knowledge graph for accurate and explainable recommendation. On the other hand, we introduce datasets used in these works. Finally, we propose several potential research directions in this field.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.
Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.