亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work introduces efficient symbolic algorithms for quantitative reactive synthesis. We consider resource-constrained robotic manipulators that need to interact with a human to achieve a complex task expressed in linear temporal logic. Our framework generates reactive strategies that not only guarantee task completion but also seek cooperation with the human when possible. We model the interaction as a two-player game and consider regret-minimizing strategies to encourage cooperation. We use symbolic representation of the game to enable scalability. For synthesis, we first introduce value iteration algorithms for such games with min-max objectives. Then, we extend our method to the regret-minimizing objectives. Our benchmarks reveal that our symbolic framework not only significantly improves computation time (up to an order of magnitude) but also can scale up to much larger instances of manipulation problems with up to 2x number of objects and locations than the state of the art.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · Learning · Machine Learning · Performer · 泛化理論 ·
2023 年 5 月 3 日

Data in many real-world applications are often accumulated over time, like a stream. In contrast to conventional machine learning studies that focus on learning from a given training data set, learning from data streams cannot ignore the fact that the incoming data stream can be potentially endless with overwhelming size and unknown changes, and it is impractical to assume to have sufficient computational/storage resource such that all received data can be handled in time. Thus, the generalization performance of learning from data streams depends not only on how many data have been received, but also on how many data can be well exploited timely, with resource and rapidity concerns, in addition to the ability of learning algorithm and complexity of the problem. For this purpose, in this article we introduce the notion of machine learning throughput, define Stream Efficient Learning and present a preliminary theoretical framework.

Recommender systems now consume large-scale data and play a significant role in improving user experience. Graph Neural Networks (GNNs) have emerged as one of the most effective recommender system models because they model the rich relational information. The ever-growing volume of data can make training GNNs prohibitively expensive. To address this, previous attempts propose to train the GNN models incrementally as new data blocks arrive. Feature and structure knowledge distillation techniques have been explored to allow the GNN model to train in a fast incremental fashion while alleviating the catastrophic forgetting problem. However, preserving the same amount of the historical information for all users is sub-optimal since it fails to take into account the dynamics of each user's change of preferences. For the users whose interests shift substantially, retaining too much of the old knowledge can overly constrain the model, preventing it from quickly adapting to the users' novel interests. In contrast, for users who have static preferences, model performance can benefit greatly from preserving as much of the user's long-term preferences as possible. In this work, we propose a novel training strategy that adaptively learns personalized imitation weights for each user to balance the contribution from the recent data and the amount of knowledge to be distilled from previous time periods. We demonstrate the effectiveness of learning imitation weights via a comparison on five diverse datasets for three state-of-art structure distillation based recommender systems. The performance shows consistent improvement over competitive incremental learning techninques.

In the study of reactive systems, qualitative properties are usually easier to model and analyze than quantitative properties. This is especially true in systems where mutually beneficial cooperation between agents is possible, such as multi-agent systems. The large number of possible payoffs available to agents in reactive systems with quantitative properties means that there are many scenarios in which agents deviate from mutually beneficial outcomes in order to gain negligible payoff improvements. This behavior often leads to less desirable outcomes for all agents involved. For this reason we study satisficing goals, derived from a decision-making approach aimed at meeting a good-enough outcome instead of pure optimization. By considering satisficing goals, we are able to employ efficient automata-based algorithms to find pure-strategy Nash equilibria. We then show that these algorithms extend to scenarios in which agents have multiple thresholds, providing an approximation of optimization while still retaining the possibility of mutually beneficial cooperation and efficient automata-based algorithms. Finally, we demonstrate a one-way correspondence between the existence of $\epsilon$-equilibria and the existence of equilibria in games where agents have multiple thresholds.

Score-based diffusion models (SBDM) have recently emerged as state-of-the-art approaches for image generation. Existing SBDMs are typically formulated in a finite-dimensional setting, where images are considered as tensors of a finite size. This papers develops SBDMs in the infinite-dimensional setting, that is, we model the training data as functions supported on a rectangular domain. Besides the quest for generating images at ever higher resolution our primary motivation is to create a well-posed infinite-dimensional learning problem so that we can discretize it consistently on multiple resolution levels. We thereby hope to obtain diffusion models that generalize across different resolution levels and improve the efficiency of the training process. We demonstrate how to overcome two shortcomings of current SBDM approaches in the infinite-dimensional setting. First, we modify the forward process to ensure that the latent distribution is well-defined in the infinite-dimensional setting using the notion of trace class operators. Second, we illustrate that approximating the score function with an operator network, in our case Fourier neural operators (FNOs), is beneficial for multilevel training. After deriving the forward process in the infinite-dimensional setting and reverse processes for finite approximations, we show their well-posedness, derive adequate discretizations, and investigate the role of the latent distributions. We provide first promising numerical results on two datasets, MNIST and material structures. In particular, we show that multilevel training is feasible within this framework.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

Meta-learning extracts the common knowledge acquired from learning different tasks and uses it for unseen tasks. It demonstrates a clear advantage on tasks that have insufficient training data, e.g., few-shot learning. In most meta-learning methods, tasks are implicitly related via the shared model or optimizer. In this paper, we show that a meta-learner that explicitly relates tasks on a graph describing the relations of their output dimensions (e.g., classes) can significantly improve the performance of few-shot learning. This type of graph is usually free or cheap to obtain but has rarely been explored in previous works. We study the prototype based few-shot classification, in which a prototype is generated for each class, such that the nearest neighbor search between the prototypes produces an accurate classification. We introduce "Gated Propagation Network (GPN)", which learns to propagate messages between prototypes of different classes on the graph, so that learning the prototype of each class benefits from the data of other related classes. In GPN, an attention mechanism is used for the aggregation of messages from neighboring classes, and a gate is deployed to choose between the aggregated messages and the message from the class itself. GPN is trained on a sequence of tasks from many-shot to few-shot generated by subgraph sampling. During training, it is able to reuse and update previously achieved prototypes from the memory in a life-long learning cycle. In experiments, we change the training-test discrepancy and test task generation settings for thorough evaluations. GPN outperforms recent meta-learning methods on two benchmark datasets in all studied cases.

Knowledge graphs capture structured information and relations between a set of entities or items. As such they represent an attractive source of information that could help improve recommender systems. However existing approaches in this domain rely on manual feature engineering and do not allow for end-to-end training. Here we propose knowledge-aware graph neural networks with label smoothness regularization to provide better recommendations. Conceptually, our approach computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relationships for a given user. This way we transform the knowledge graph into a user-specific weighted graph and then applies a graph neural network to compute personalized item embeddings. To provide better inductive bias, we use label smoothness, which assumes that adjacent items in the knowledge graph are likely to have similar user relevance labels/scores. Label smoothness provides regularization over edge weights and we prove that it is equivalent to a label propagation scheme on a graph. Finally, we combine knowledge-aware graph neural networks and label smoothness and present the unified model. Experiment results show that our method outperforms strong baselines in four datasets. It also achieves strong performance in the scenario where user-item interactions are sparse.

The goal of few-shot learning is to learn a classifier that generalizes well even when trained with a limited number of training instances per class. The recently introduced meta-learning approaches tackle this problem by learning a generic classifier across a large number of multiclass classification tasks and generalizing the model to a new task. Yet, even with such meta-learning, the low-data problem in the novel classification task still remains. In this paper, we propose Transductive Propagation Network (TPN), a novel meta-learning framework for transductive inference that classifies the entire test set at once to alleviate the low-data problem. Specifically, we propose to learn to propagate labels from labeled instances to unlabeled test instances, by learning a graph construction module that exploits the manifold structure in the data. TPN jointly learns both the parameters of feature embedding and the graph construction in an end-to-end manner. We validate TPN on multiple benchmark datasets, on which it largely outperforms existing few-shot learning approaches and achieves the state-of-the-art results.

北京阿比特科技有限公司